Options
Finite quasisimple groups acting on rationally connected threefolds
Auteur(s)
Date de parution
2023-09-24
In
Mathematical Proceedings of the Cambridge Philosophical Society
Vol.
174
No
3
De la page
531
A la page
568
Résumé
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: $\mathfrak{A}_5$, $\operatorname{PSL}_2(\mathbf{F}_7)$, $\mathfrak{A}_6$,
$\operatorname{SL}_2(\mathbf{F}_8)$, $\mathfrak{A}_7$, $\operatorname{PSp}_4(\mathbf{F}_3)$, $\operatorname{SL}_2(\mathbf{F}_{7})$, $2.\mathfrak{A}_5$, $2.\mathfrak{A}_6$, $3.\mathfrak{A}_6$ or $6.\mathfrak{A}_6$. All of these groups with a possible exception of $2.\mathfrak{A}_6$ and $6.\mathfrak{A}_6$ indeed act on some rationally connected threefolds.
$\operatorname{SL}_2(\mathbf{F}_8)$, $\mathfrak{A}_7$, $\operatorname{PSp}_4(\mathbf{F}_3)$, $\operatorname{SL}_2(\mathbf{F}_{7})$, $2.\mathfrak{A}_5$, $2.\mathfrak{A}_6$, $3.\mathfrak{A}_6$ or $6.\mathfrak{A}_6$. All of these groups with a possible exception of $2.\mathfrak{A}_6$ and $6.\mathfrak{A}_6$ indeed act on some rationally connected threefolds.
Identifiants
Type de publication
journal article
Dossier(s) à télécharger