Voici les éléments 1 - 7 sur 7
  • Publication
    Accès libre
    Protein transport in organelles: The Toc complex way of preprotein import
    (2009)
    Agne, Birgit
    ;
    Most of the estimated 1000 or so chloroplast proteins are synthesized as cytosolic preproteins with N-terminal cleavable targeting sequences (transit peptide). Translocon complexes at the outer (Toc) and inner chloroplast envelope membrane (Tic) concertedly facilitate post-translational import of preproteins into the chloroplast. Three components, the Toc34 and Toc159 GTPases together with the Toc75 channel, form the core of the Toc complex. The two GTPases act as GTP-dependent receptors at the chloroplast surface and promote insertion of the preprotein across the Toc75 channel. Additional factors guide preproteins to the Toc complex or support their stable ATP-dependent binding to the chloroplast. This minireview describes the components of the Toc complex and their function during the initial steps of preprotein translocation across the chloroplast envelope.
  • Publication
    Accès libre
    The Function and Diversity of Plastid Protein Import Pathways : A Multilane GTPase Highway into Plastids
    (2006) ;
    Schnell, Danny J.
    The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc–Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development.
  • Publication
    Métadonnées seulement
    The function and diversity of plastid protein import pathways: A multilane GTPase highway into plastids
    (2006) ;
    Schnell, Danny
    The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc-Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development.
  • Publication
    Accès libre
    AtToc90, a New GTP-Binding Component of the Arabidopsis Chloroplast Protein Import Machinery
    (2004)
    Hiltbrunner, Andreas
    ;
    Grünig, Kathrin
    ;
    Alvarez-Huerta, Mayte
    ;
    Infanger, Sibylle
    ;
    Bauer, Jörg
    ;
    AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.
  • Publication
    Métadonnées seulement
    AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery
    (2004)
    Hiltbrunner, Andreas
    ;
    Grunig, Kathrin
    ;
    Alvarez-Huerta, Mayte
    ;
    Infanger, Sibylle
    ;
    Bauer, Jörg
    ;
    AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, - 120 and - 90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.
  • Publication
    Métadonnées seulement
    The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP
    (2002)
    Smith, Matthew
    ;
    Hiltbrunner, Andreas
    ;
    ;
    Schnell, Danny
    The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.
  • Publication
    Métadonnées seulement
    Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane
    (2001)
    Hiltbrunner, Andreas
    ;
    Bauer, Jörg
    ;
    Vidi, Pierre-Alexandre
    ;
    Infanger, Sibylle
    ;
    ;
    Hohwy, Morten
    ;
    Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous, GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of at Toc159 between a soluble and an integral membrane form.