Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule
    (2010)
    Zbierzak, Anna Maria
    ;
    ;
    Wille, Christina
    ;
    Vidi, Pierre-Alexandre
    ;
    Giavalisco, Patrick
    ;
    Lohmann, Antje
    ;
    Briesen, Isabel
    ;
    Porfirova, Svetlana
    ;
    Bréhélin, Claire
    ;
    ;
    Dörmann, Peter
    Plastoglobules, lipid–protein bodies in the stroma of plant chloroplasts, are enriched in non-polar lipids, in particular prenyl quinols. In the present study we show that, in addition to the thylakoids, plastoglobules also contain a considerable proportion of the plastidial PQ-9 (plastoquinol-9), the redox component of photosystem II, and of the cyclized product of PQ-9, PC-8 (plastochromanol-8), a tocochromanol with a structure similar to γ-tocopherol and γ-tocotrienol, but with a C-40 prenyl side chain. PC-8 formation was abolished in the Arabidopsis thaliana tocopherol cyclase mutant vte1, but accumulated in VTE1-overexpressing plants, in agreement with a role of tocopherol cyclase (VTE1) in PC-8 synthesis. VTE1 overexpression resulted in the proliferation of the number of plastoglobules which occurred in the form of clusters in the transgenic lines. Simultaneous overexpression of VTE1 and of the methyltransferase VTE4 resulted in the accumulation of a compound tentatively identified as 5-methyl-PC-8, the methylated form of PC-8. The results of the present study suggest that the existence of a plastoglobular pool of PQ-9, along with the partial conversion of PQ-9 into PC-8, might represent a mechanism for the regulation of the antioxidant content in thylakoids and of the PQ-9 pool that is available for photosynthesis.
  • Publication
    Accès libre
    AtToc90, a New GTP-Binding Component of the Arabidopsis Chloroplast Protein Import Machinery
    (2004)
    Hiltbrunner, Andreas
    ;
    Grünig, Kathrin
    ;
    Alvarez-Huerta, Mayte
    ;
    Infanger, Sibylle
    ;
    Bauer, Jörg
    ;
    AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.