Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Efficiency of template matching methods for Multiple-Point Statistics simulations

Efficiency of template matching methods for Multiple-Point Statistics simulations

Author(s)
Sharifzadeh Lari, Mansoureh
Straubhaar, Julien  
Centre d'hydrogéologie et de géothermie  
Renard, Philippe  
Poste d'hydrogéologie stochastique et géostatistique  
Date issued
August 2021
In
Applied Computing and Geosciences
No
11
From page
100064
To page
100083
Reviewed by peer
1
Subjects
Multiple-point statistics Template matching
Abstract
Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise.

Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64361
DOI
10.1016/j.acags.2021.100064
File(s)
Loading...
Thumbnail Image
Download
Name

2023-01-11_110_9568.pdf

Type

Main Article

Size

21.14 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new