Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Dynamics of Morse-Smale urn processes

Dynamics of Morse-Smale urn processes

Author(s)
Benaim, Michel  
Chaire de probabilités  
Hirsch, Morris W
Date issued
1995
In
Ergodic Theory and Dynamical Systems
No
15
From page
1005
To page
1030
Abstract
We consider stochastic processes {x(n)}(n greater than or equal to 0) of the form x(n+1)-x(n)=gamma(n+1)(F(x(n))+U-n+1) where F : R(m) --> R(m) is C-2, {gamma(i)}(i greater than or equal to 1) is a Sequence of positive numbers decreasing to 0 and {U-i}(i greater than or equal to 1) is a sequence of uniformly bounded R(m)-valued random variables forming suitable martingale differences. We show that when the vector field F is Morse-Smale, almost surely every sample path approaches an asymptotically stable periodic orbit of the deterministic dynamical system dy/dt = F(y). In the case of certain generalized urn processes we show that for each such orbit Gamma, the probability of sample paths approaching Gamma is positive. This gives the generic behavior of three-color urn models.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/56024
DOI
10.1017/S0143385700009767
File(s)
Loading...
Thumbnail Image
Download
Name

Dynamics_of_Morse_Smale_urn_processes.pdf

Type

Main Article

Size

1.26 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new