Options
Extremal eigenvalues of the Laplacian in a conformal class of metrics: The 'conformal spectrum'
Auteur(s)
El Soufi, Ahmad
Date de parution
2003-12-21
In
Annals of Global Analysis and Geometry
Vol.
4
No
24
De la page
337
A la page
349
Résumé
Let M be a compact connected manifold of dimension n endowed with a conformal class C of Riemannian metrics of volume one. For any integer k greater than or equal to 0, we consider the conformal invariant.c k( C) defined as the supremum of the k-th eigenvalue lambda(k)(g) of the Laplace-Beltrami operator Delta(g), where g runs over C. First, we give a sharp universal lower bound for lambda(k)(c)(C) extending to all k a result obtained by Friedlander and Nadirashvili for k = 1. Then, we show that the sequence {lambda(k)(c)(C)}, that we call 'conformal spectrum', is strictly increasing and satisfies, For Allk greater than or equal to 0, lambda(k+1)(c)(C)(n/2)-lambda(k)(c)(C)(n/2) greater than or equal to n(n/2) omega(n), where omega(n) is the volume of the n-dimensional standard sphere. When M is an orientable surface of genus gamma, we also consider the supremum zeta(k)(top) (gamma) of lambda(k)(g) over the set of all the area one Riemannian metrics on M, and study the behavior of lambda(k)(top)(gamma) in terms of gamma.
Identifiants
Type de publication
journal article