Options
Extremal g-invariant eigenvalues of the Laplacian of g-invariant metrics
Auteur(s)
Date de parution
2008-12-21
In
Mathematische Zeitschrift
Vol.
1
No
258
De la page
29
A la page
41
Mots-clés
Résumé
The study of extremal properties of the spectrum often involves restricting the metrics under consideration. Motivated by the work of Abreu and Freitas in the case of the sphere S-2 endowed with S-1-invariant metrics, we consider the subsequence lambda(G)(k) of the spectrum of a Riemannian manifold M which corresponds to metrics and functions invariant under the action of a compact Lie group G. If. G has dimension at least 1, we show that the functional lambda(G)(k) admits no extremal metric under volume-preserving G-invariant deforma- tions. If, moreover, M has dimension at least three, then the functional lambda(G)(k) is unbounded when restricted to any conformal class of G-invariant metrics of fixed volume. As a special case of this, we can consider the standard 0(n)-action on S-n; however, if we also require the metric to be induced by an embedding of S-n in Rn+1, we get an optimal upper bound on lambda(G)(k).
Identifiants
Type de publication
journal article