Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Imputation of Income Data with Generalized Calibration Procedure and GB2 distribution: Illustration with SILC data
 
  • Details
Options
Vignette d'image

Imputation of Income Data with Generalized Calibration Procedure and GB2 distribution: Illustration with SILC data

Auteur(s)
Graf, Eric 
Institut de statistique 
Maison d'édition
Neuchâtel Université de Neuchâtel Statistical Institute
Date de parution
2014
Nombre de page
36
Mots-clés
  • GB2
  • generalized calibration
  • inequality measures
  • Laeken indicators
  • nonignorable nonresponse
  • SILC
  • IVEware
  • GB2

  • generalized calibrati...

  • inequality measures

  • Laeken indicators

  • nonignorable nonrespo...

  • SILC

  • IVEware

Résumé
In sample surveys of households and persons, questions about income are important variables and often sensitive and thus subject to a higher nonresponse rate. The distribution of such collected incomes is neither normal, nor log-normal. Hypotheses of classical regression models to explain the income (or their log) are not satisfied. Imputations using such models modify the original and true distribution of the data which is not. Empirical studies have shown that the generalized beta distribution of the second kind (GB2) it fits income data very well. We present a parametric method of imputation relying on weights obtained by generalized calibration. A GB2 distribution is fitted on the income distribution in order to assess that these weights can compensate for nonignorable nonresponse that affects the variable of interest. The success of the operation greatly depends on the choice of auxiliary and instrumental variables used for calibration, which we discuss. We validate our imputation system on data from the Swiss Survey on Income and Living Conditions (SILC) and compare it to imputations performed through the use of IVEware software running on SAS. We have made great efforts to estimate variances through linearization, taking all the steps of our procedure into account.
Notes
Submitted article
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/2907
Type de publication
working paper
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00