Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. IsoGeometric Smoothing: A new approach for smoothing on surfaces
 
  • Details
Options
Vignette d'image

IsoGeometric Smoothing: A new approach for smoothing on surfaces

Auteur(s)
Wilhelm, Matthieu 
Institut de statistique 
Dedè, Luca
Sangalli, Laura M.
Wilhelm, Pierre
Date de parution
2015-12-12
Résumé
We propose a new approach for smoothing on surfaces. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical representations commonly used in industrial applications. The estimation is based on the minimization of a penalized least-square functional which is equivalent to solve a 4th-order Partial Differential Equation (PDE). We use Isogeometric Analysis (IGA), which is a method for numerically solve PDE, for the numerical approximation of such surface PDE, leading to an IsoGeometric Smoothing (IGS) method. IGA has the great advantage to use the exact geometrical representation of the surface in the analysis, thus avoiding complex meshing procedures. IGA also provides at least globally $C^1-$continuous basis functions with compact support. We show the performance of the proposed IGS method by means of numerical simulations and we apply it to the estimation of the pressure coefficient, and associated aerodynamic force on a winglet of the SOAR space shuttle.
Notes
, 8th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2015), London, UK
Identifiants
https://libra.unine.ch/handle/123456789/24237
Autre version
http://cmstatistics.org/RegistrationsV2/CMStatistics2015/viewSubmission.php?id=1485&token=93q841o57r493n5592q54q4o0n7157p9
Type de publication
conference presentation
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00