Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Bias Robustness and Efficiency in Model-Based Inference
 
  • Details
Options
Vignette d'image

Bias Robustness and Efficiency in Model-Based Inference

Auteur(s)
Nedyalkova, Desislava 
Institut de statistique 
TillĂ©, Yves 
Institut de statistique 
Date de parution
2012-9-4
In
Statistica Sinica
No
22
De la page
777
A la page
794
Mots-clés
  • Balanced sampling
  • finite population sampling
  • polynomial model
  • ratio model
  • robust estimation
  • Balanced sampling

  • finite population sam...

  • polynomial model

  • ratio model

  • robust estimation

Résumé
In model-based inference, the selection of balanced samples has been considered to give protection against misspecification of the model. A recent development in finite population sampling is that balanced samples can be randomly selected. There are several possible strategies that use balanced samples. We give a definition of balanced sample that embodies overbalanced, mean-balanced, and $\pi$-balanced samples, and we derive strategies in order to equalize a $d$-weighted estimator with the best linear unbiased estimator. We show the value of selecting a balanced sample with inclusion probabilities proportional to the standard deviations of the errors with the Horvitz-Thompson estimator. This is a strategy that is design-robust and efficient. We show its superiority compared to other strategies that use balanced samples in the model-based framework. In particular, we show that this strategy is preferable to the use of overbalanced samples in the polynomial model. The problem of bias-robustness is also discussed, and we show how overspecifying the model can protect against misspecification.
Lié au projet
Convention UniversitĂ© de Neuchâtel/Office fĂ©dĂ©ral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/18943
Autre version
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A22n215.pdf
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00