Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Using token-based semantic vector spaces for corpus-linguistic analyses: From practical applications to tests of theoretical claims
 
  • Details
Options
Vignette d'image

Using token-based semantic vector spaces for corpus-linguistic analyses: From practical applications to tests of theoretical claims

Auteur(s)
Hilpert, Martin 
Institut de langue et littérature anglaises 
Correia Saavedra, David 
Institut de langue et littérature anglaises 
Date de parution
2017
In
Corpus Linguistics and Linguistic Theory, De Gruyter, 2017///1-32
Mots-clés
  • semantic vector spaces
  • token-based
  • word sense disambiguation
  • asymmetric priming
  • semantic vector space...

  • token-based

  • word sense disambigua...

  • asymmetric priming

Résumé
This paper presents token-based semantic vector spaces as a tool that can be applied in corpus-linguistic analyses such as word sense comparisons, comparisons of synonymous lexical items, and matching of concordance lines with a given text. We demonstrate how token-based semantic vector spaces are created, and we illustrate the kinds of result that can be obtained with this approach. Our main argument is that token-based semantic vector spaces are not only useful for practical corpus-linguistic applications but also for the investigation of theory-driven questions. We illustrate this point with a discussion of the asymmetric priming hypothesis (Jäger and Rosenbach 2008). The asymmetric priming hypothesis, which states that grammaticalizing constructions will be primed by their lexical sources but not vice versa, makes a number of empirically testable predictions. We operationalize and test these predictions, concluding that token-based semantic vector spaces yield conclusions that are relevant for linguistic theory-building.
Identifiants
https://libra.unine.ch/handle/123456789/3278
_
10.1515/cllt-2017-0009
Type de publication
journal article
Dossier(s) à télécharger
 main article: Hilpert_Martin_-_Using_token-based_semantic_vector_spaces_for_corpus-linguistic_20181126.pdf (1.87 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00