Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Bayesian Adaptive Reconstruction of Profile Optima and Optimizers
 
  • Details
Options
Vignette d'image

Bayesian Adaptive Reconstruction of Profile Optima and Optimizers

Auteur(s)
Ginsbourger, David
Baccou, Jean
Chevalier, Clément 
Institut de statistique 
Perales, Frédéric
Garland, Nicolas
Monerie, Yann
Date de parution
2014
In
SIAM/ASA J. Uncertainty Quantification
Vol.
1
No
2
De la page
490
A la page
510
Résumé
Given a function depending both on decision parameters and nuisance variables, we consider the issue of estimating and quantifying uncertainty on profile optima and/or optimal points as functions of the nuisance variables. The proposed methods are based on interpolations of the objective function constructed from a finite set of evaluations. Here the functions of interest are reconstructed relying on a kriging model but also using Gaussian random field conditional simulations that allow a quantification of uncertainties in the Bayesian framework. Besides this, we introduce a variant of the expected improvement criterion, which proves efficient for adaptively learning the set of profile optima and optimizers. The results are illustrated with a toy example and through a physics case study on the optimal packing of polydisperse frictionless spheres.
Identifiants
https://libra.unine.ch/handle/123456789/24156
_
10.1137/130949555
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00