Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Self-interacting diffusions. III. Symmetric interactions
 
  • Details
Options
Vignette d'image

Self-interacting diffusions. III. Symmetric interactions

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Raimond, Olivier
Date de parution
2005
In
Annals of Probability
Vol.
5
No
33
De la page
1716
A la page
1759
Mots-clés
  • self-interacting random processes
  • reinforced processes
  • THEOREM
  • self-interacting rand...

  • reinforced processes

  • THEOREM

Résumé
Let M be a compact Riemannian manifold. A self-interacting diffusion on M is a stochastic process solution to where {W-t} is a Brownian vector field on M and V-x(y) = V(x, y) a smooth function. Let mu(t) = 1/t integral(0)(t) delta X-s ds denote the normalized occupation measure of X-t. We prove that, when V is symmetric, mu(t) converges almost surely to the critical set of a certain nonlinear free energy functional J. Furthermore, J has generically finitely many critical points and mu(t) converges almost surely toward a local minimum of J. Each local minimum has a positive probability to be selected.
Identifiants
https://libra.unine.ch/handle/123456789/6262
_
10.1214/009117905000000251
Type de publication
journal article
Dossier(s) à télécharger
 main article: 009117905000000251.pdf (321.23 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00