Options
Inférence basée sur le plan pour l'estimation de petits domaines
Editeur(s)
Madre, Jean-Loup
Date de parution
2013
Résumé
La forte demande de résultats à un niveau géographique fin, notamment à partir d’enquêtes nationales, a mis en évidence la fragilité des estimations sur petits domaines. Cette thèse propose d’y remédier avec des méthodes spécifiques basées sur le plan de sondage. Celles-ci reposent sur la construction de nouvelles pondérations pour chaque unité statistique. La première méthode consiste à optimiser le redressement du sous-échantillon d’une enquête inclus dans un domaine. La deuxième repose sur la construction de poids dépendant à la fois des unités statistiques et des domaines. Elle consiste à scinder les poids de sondage de l’estimateur global tout en respectant deux contraintes : 1/ la somme des estimations sur toute partition en domaines est égale à l’estimation globale ; 2/ le système de pondération pour un domaine particulier satisfait les propriétés de calage sur les variables auxiliaires connues pour le domaine. L’estimateur par scission ainsi obtenu se comporte de manière quasi analogue au célèbre estimateur BLUP (meilleur prédicteur linéaire sans biais). La troisième méthode propose une réécriture de l’estimateur BLUP sous la forme d’un estimateur linéaire homogène, en adoptant une approche basée sur le plan de sondage, bien que l’estimateur dépende d’un modèle. De nouveaux estimateurs BLUP modifiés sont obtenus. Leur précision, estimée par simulation avec application sur des données réelles, est assez proche de celle de l’estimateur blup standard. Les méthodes développées dans cette thèse sont ensuite appliquées à l’estimation d’indicateurs de la mobilité locale à partir de l’Enquête Nationale sur les Transports et les Déplacements 2007-2008. Lorsque la taille d’un domaine est faible dans l’échantillon, les estimations obtenues avec la première méthode perdent en précision, alors que la précision reste satisfaisante pour les deux autres méthodes., The strong demand for results at a detailed geographic level, particularly from national surveys, has raised the problem of the fragility of estimates for small areas. This thesis addresses this issue with specific methods based on the sample design. These ones consist of building new weights for each statistical unit. The first method consists of optimizing the re-weighting of a subsample survey included in an area. The second one is based on the construction of weights that depend on the statistical units as well as the areas. It consists of splitting the sampling weights of the overall estimator while satisfying two constraints : 1/ the sum of the estimates on every partition into areas is equal to the overall estimate ; 2/ the system of weights for a given area satisfies calibration properties on known auxiliary variables at the level of the area. The split estimator thus obtained behaves almost similarly as the well-known BLUP (best linear unbiased predictor) estimator. The third method proposes a rewriting of the BLUP estimator, although model-based, in the form of a homogenous linear estimator from a design-based approach. New modified BLUP estimators are obtained. Their precision, estimated by simulation with an application to real data, is quite close to that of the standard blup estimator. Then, the methods developed in this thesis are applied to the estimation of local mobility indicators from the 2007-2008 French National Travel Survey. When the size of an area is small in the sample, the estimates obtained with the first method are not precise enough whereas the precision remains satisfactory for the two other methods.
Notes
Thèse de doctorat : Université de Neuchâtel, 2013 ; 2377
Titre alternatif
Design-based inference for small area estimation
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger