Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Self-interacting diffusions
 
  • Details
Options
Vignette d'image

Self-interacting diffusions

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Ledoux, Michel
Raimond, Olivier
Date de parution
2002
In
Probability Theory and Related Fields
Vol.
1
No
122
De la page
1
A la page
41
Mots-clés
  • REINFORCED RANDOM-WALK
  • STOCHASTIC-APPROXIMATION ALGORITHMS
  • ASYMPTOTIC-BEHAVIOR
  • REINFORCED RANDOM-WAL...

  • STOCHASTIC-APPROXIMAT...

  • ASYMPTOTIC-BEHAVIOR

Résumé
This paper is concerned with a general class of self-interacting diffusions [X-t}(tgreater than or equal to0) living oil a compact Riemannian manifold M. These are solutions to stochastic differential equations of the form : dX(t) = Brownian increments + drift term depending on X-t and mu(t), the normalized occupation measure of the process. It is proved that the asymptotic behavior of {mu(t)} can be precisely related to the asymptotic behavior of a deterministic dynamical semi-flow Phi = {Phi(t)}(tgreater than or equal to0) defined on the space of the Borel probability measures on M. In particular, the limit sets of {mu(t)} are proved to be almost surely attractor free sets for Phi. These results are applied to several examples of self-attracting/repelling diffusions on the n-sphere. For instance, in the case of self-attracting diffusions, our results apply to prove that {mu(t)} can either converge toward the normalized Riemannian measure, or to a gaussian measure, depending on the value of a parameter measuring the strength of the attraction.
Identifiants
https://libra.unine.ch/handle/123456789/6252
_
10.1007/s004400100161
Type de publication
journal article
Dossier(s) à télécharger
 main article: s004400100161.pdf (338.16 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00