Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. The asymptotic behavior of fraudulent algorithms
 
  • Details
Options
Vignette d'image

The asymptotic behavior of fraudulent algorithms

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Laurent Miclo
Date de parution
2024
Résumé
Let U be a Morse function on a compact connected m-dimensional Riemannian manifold, m≥2, satisfying minU=0 and let U={x∈M:U(x)=0} be the set of global minimizers. Consider the stochastic algorithm X(β):=(X(β)(t))t≥0 defined on N=M∖U, whose generator isUΔ⋅−β⟨∇U,∇⋅⟩, where $\beta\in\RR$ is a real parameter.We show that for β>m2−1, X(β)(t) converges a.s.\ as t→∞, toward a point p∈U and that each p∈U has a positive probability to be selected. On the other hand, for β<m2−1, the law of (X(β)(t)) converges in total variation (at an exponential rate) toward the probability measure πβ having density proportional to U(x)−1−β with respect to the Riemannian measure.
Identifiants
https://libra.unine.ch/handle/123456789/32580
_
2401.12605v1
Type de publication
preprint
Dossier(s) à télécharger
 main article: 2401.12605.pdf (293.23 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00