Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Robust input layer for neural networks for hyperspectral classification of data with missing bands
 
  • Details
Options
Vignette d'image

Robust input layer for neural networks for hyperspectral classification of data with missing bands

Auteur(s)
Fasnacht, Laurent 
Centre d'hydrogéologie et de géothermie 
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Brunner, Philip 
Centre d'hydrogéologie et de géothermie 
Date de parution
2020-8
In
Applied Computing and Geosciences
No
8
De la page
100034
A la page
100039
Revu par les pairs
1
Résumé
Hyperspectral classification using artificial neural networks is commonly applied on camera dependent interpolated data, or on the results of a dimensionality reduction algorithm. While these methods usually produce satisfactory results, they have severe limitations when part of the spectrum is missing, for example when parts of the image are overexposed or affected by bad pixels. This article presents an input layer based on the Haar transform for artificial neural networks used for hyperspectral data classification. This input layer is designed to perform efficiently with incomplete data and is independent of the specific bands used by the camera. This could enable providing pre-trained neural networks, which can be used with a camera with different specifications than the one used for training. This paper shows that a classifier for mineral identification built using this approach performs better than standard normalization on incomplete spectra, and similarly on complete spectra. Additionally, it shows that such a classifier matches local spectral features, and therefore that the artificial neural network is matching the spectrum shape.
Identifiants
https://libra.unine.ch/handle/123456789/29768
_
10.1016/j.acags.2020.100034
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2022-01-12_110_4204.pdf (1.26 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00