Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators
 
  • Details
Options
Vignette d'image

Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators

Auteur(s)
Graf, Eric 
Institut de statistique 
TillĂ©, Yves 
Institut de statistique 
Date de parution
2014-6-27
In
Survey Methodology
Vol.
1
No
40
De la page
61
A la page
79
Mots-clés
  • : influence function
  • EU-SILC survey
  • non-linear statistics
  • poverty and inequality indicators
  • : influence function

  • EU-SILC survey

  • non-linear statistics...

  • poverty and inequalit...

Résumé
We have used the generalized linearization technique based on the concept of influence function, as Osier has done (Osier 2009), to estimate the variance of complex statistics such as Laeken indicators. Simulations conducted using the R language show that the use of Gaussian kernel estimation to estimate an income density function results in a strongly biased variance estimate. We are proposing two other density estimation methods that significantly reduce the observed bias. One of the methods has already been outlined by Deville (2000). The results published in this article will help to significantly improve the quality of information on the precision of certain Laeken indicators that are disseminated and compared internationally.
Lié au projet
Convention UniversitĂ© de Neuchâtel/Office fĂ©dĂ©ral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/21713
Autre version
http://www.statcan.gc.ca/pub/12-001-x/12-001-x2014001-eng.pdf
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00