Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Comparing two methods for addressing uncertainty in risk assessments
 
  • Details
Options
Vignette d'image

Comparing two methods for addressing uncertainty in risk assessments

Auteur(s)
Guyonnet, Dominique
Come, Bernard
Perrochet, Pierre 
Centre d'hydrogéologie et de géothermie 
Parriaux, Aurèle
Date de parution
1999
In
Journal of Environmental Engineering-Asce
Vol.
7
No
125
De la page
660
A la page
666
Mots-clés
  • TRANSPORT
  • GROUNDWATER
  • CONTAMINANTS
  • MODEL
  • SOIL
  • TRANSPORT

  • GROUNDWATER

  • CONTAMINANTS

  • MODEL

  • SOIL

Résumé
The Monte Carlo method is a popular method for incorporating uncertainty relative to parameter values in risk assessment modeling. But risk assessment models are often used as screening tools in situations where information is typically sparse and imprecise. In this case, it is questionable whether true probabilities can be assigned to parameter estimates, or whether these estimates should be considered as simply possible. This paper examines the possibilistic approach of accounting for parameter value uncertainty, and provides a comparison with the Monte Carlo probabilistic approach. The comparison illustrates the conservative nature of the possibilistic approach, which considers all possible combinations of parameter values, but does not transmit (through multiplication) the uncertainty of the parameter values onto that of the calculated result. In the Monte Carlo calculation, on the other hand, scenarios that combine low probability parameter values have all the less chance of being randomly selected. If probabilities are arbitrarily assigned to parameter estimates, without being substantiated by site-specific field data, possible combinations of parameter values (scenarios) will be eliminated from the analysis as a result of Monte Carlo averaging. This could have a detrimental impact in an environmental context, when the mere possibility that a scenario may occur can be an important element in the decision-making process.
Identifiants
https://libra.unine.ch/handle/123456789/12030
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00