Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Combining disaggregate forecasts for inflation: The SNB's ARIMA model
 
  • Details
Options
Vignette d'image

Combining disaggregate forecasts for inflation: The SNB's ARIMA model

Auteur(s)
Kaufmann, Daniel 
Institut de recherches économiques 
Huwiler, Marco
Date de parution
2013-7-1
In
SNB Economic Studies
No
7
De la page
1
A la page
30
Revu par les pairs
1
Mots-clés
  • Swiss CPI inflation
  • Forecast combination
  • Forecast aggregation
  • Disaggregateinformation
  • ARIMA models
  • Missing data
  • Kalman filter
  • Swiss CPI inflation

  • Forecast combination

  • Forecast aggregation

  • Disaggregateinformati...

  • ARIMA models

  • Missing data

  • Kalman filter

Résumé
This study documents the SNB's ARIMA model based on disaggregated CPI data used to produce inflation forecasts over the short-term horizon, and evaluates its forecasting performance. Our findings suggest that the disaggregate ARIMA model for the Swiss CPI performed better than relevant benchmarks. In particular, estimating ARIMA models for individual CPI expenditure items and aggregating the forecasts from these models gives better results than directly applying the ARIMA methodto the total CPI. We then extend the model to factor in changes in the collection frequency of the Swiss CPI data and show that this extension further improves the forecasting performance.
Identifiants
https://libra.unine.ch/handle/123456789/28013
Autre version
https://www.snb.ch/en/mmr/studies/id/economic_studies_2013_07
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-02-29_2768_1091.pdf (538.26 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00