Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Bayesian optimization in ab initio nuclear physics
 
  • Details
Options
Vignette d'image

Bayesian optimization in ab initio nuclear physics

Auteur(s)
A Ekström
C Forssén
Dimitrakakis, Christos 
Institut d'informatique 
D Dubhashi
H T Johansson
A S Muhammad
H Salomonsson
A Schliep
Date de parution
2019
In
Journal of Physics G: Nuclear and Particle Physics
Vol.
46
Résumé
Theoretical models of the strong nuclear interaction contain unknown coupling constants (parameters) that must be determined using a pool of calibration data. In cases where the models are complex, leading to time consuming calculations, it is particularly challenging to systematically search the corresponding parameter domain for the best fit to the data. In this paper, we explore the prospect of applying Bayesian optimization to constrain the coupling constants in chiral effective field theory descriptions of the nuclear interaction. We find that Bayesian optimization performs rather well with low-dimensional parameter domains and foresee that it can be particularly useful for optimization of a smaller set of coupling constants. A specific example could be the determination of leading three-nucleon forces using data from finite nuclei or three-nucleon scattering experiments.
Identifiants
https://libra.unine.ch/handle/123456789/30954
_
10.1088/1361-6471/ab2b14
Type de publication
journal article
Dossier(s) à télécharger
 main article: pdf.pdf (2.26 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00