Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Extremal eigenvalues of the Laplacian in a conformal class of metrics: The 'conformal spectrum'
 
  • Details
Options
Vignette d'image

Extremal eigenvalues of the Laplacian in a conformal class of metrics: The 'conformal spectrum'

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
El Soufi, Ahmad
Date de parution
2003-12-21
In
Annals of Global Analysis and Geometry
Vol.
4
No
24
De la page
337
A la page
349
Mots-clés
  • Laplacian
  • eigenvalue
  • conformal metric
  • universal lower bound
  • MINIMAL IMMERSIONS
  • 1ST EIGENVALUE
  • SURFACES
  • CONJECTURE
  • Laplacian

  • eigenvalue

  • conformal metric

  • universal lower bound...

  • MINIMAL IMMERSIONS

  • 1ST EIGENVALUE

  • SURFACES

  • CONJECTURE

Résumé
Let M be a compact connected manifold of dimension n endowed with a conformal class C of Riemannian metrics of volume one. For any integer k greater than or equal to 0, we consider the conformal invariant.c k( C) defined as the supremum of the k-th eigenvalue lambda(k)(g) of the Laplace-Beltrami operator Delta(g), where g runs over C. First, we give a sharp universal lower bound for lambda(k)(c)(C) extending to all k a result obtained by Friedlander and Nadirashvili for k = 1. Then, we show that the sequence {lambda(k)(c)(C)}, that we call 'conformal spectrum', is strictly increasing and satisfies, For Allk greater than or equal to 0, lambda(k+1)(c)(C)(n/2)-lambda(k)(c)(C)(n/2) greater than or equal to n(n/2) omega(n), where omega(n) is the volume of the n-dimensional standard sphere. When M is an orientable surface of genus gamma, we also consider the supremum zeta(k)(top) (gamma) of lambda(k)(g) over the set of all the area one Riemannian metrics on M, and study the behavior of lambda(k)(top)(gamma) in terms of gamma.
Identifiants
https://libra.unine.ch/handle/123456789/8554
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00