Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Inference by linearization for Zenga’s new inequality index: a comparison with the Gini index
 
  • Details
Options
Vignette d'image

Inference by linearization for Zenga’s new inequality index: a comparison with the Gini index

Auteur(s)
Langel, Matti 
Institut de statistique 
Tillé, Yves 
Institut de statistique 
Date de parution
2012-9-17
In
Metrika
Vol.
8
No
75
De la page
1093
A la page
1110
Mots-clés
  • Gini
  • inequality
  • influence function
  • sampling
  • variance estimation
  • Gini

  • inequality

  • influence function

  • sampling

  • variance estimation

Résumé
Zenga’s new inequality curve and index are two recent tools for measuring inequality. Proposed in 2007, they should thus not be mistaken for anterior measures suggested by the same author. This paper focuses on the new measures only, which are hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z (alpha) involves the ratio of the mean income of the 100 alpha% poorest to that of the 100(1-alpha)% richest. The Zenga index can also be expressed by means of the Lorenz Curve and some of its properties make it an interesting alternative to the Gini index. Like most other inequality measures, inference on the Zenga index is not straightforward. Some research on its properties and on estimation has already been conducted but inference in the sampling framework is still needed. In this paper, we propose an estimator and variance estimator for the Zenga index when estimated from a complex sampling design. The proposed variance estimator is based on linearization techniques and more specifically on the direct approach presented by Demnati and Rao. The quality of the resulting estimators are evaluated in Monte Carlo simulation studies on real sets of income data. Finally, the advantages of the Zenga index relative to the Gini index are discussed.
Lié au projet
Convention Université de Neuchâtel/Office fédéral de la statistique 
Identifiants
https://libra.unine.ch/handle/123456789/14898
_
10.1007%2Fs00184-011-0369-1
Autre version
http://link.springer.com/article/10.1007%2Fs00184-011-0369-1
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2019-09-11_951_8989.pdf (348.25 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00