Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Gender wage difference estimation at quantile levels using sample survey data
 
  • Details
Options
Vignette d'image

Gender wage difference estimation at quantile levels using sample survey data

Auteur(s)
Mihaela-Cătălina Anastasiade-Guinand
Matei, Alina 
Institut de statistique 
Tillé, Yves 
Institut de statistique 
Date de parution
2023-09-19
In
TEST
Vol.
2023
Revu par les pairs
true
Mots-clés
  • Gender gap statistics · Quantile estimation · Counterfactual distribution · GB2 distribution · Survey weights
  • Quantile estimation
  • GB2 distribution
  • · Counterfactual distribution
  • Survey weights
  • Gender gap statistics...

  • Quantile estimation

  • GB2 distribution

  • · Counterfactual dist...

  • Survey weights

Résumé
This paper is motivated by the growing interest in estimating gender wage differences in official statistics. The wage of an employee is hypothetically a reflection of her or his characteristics, such as education level or work experience. It is possible that men and women with the same characteristics earn different wages. Our goal is to estimate the differences between wages at different quantiles, using sample survey data within a superpopulation framework. To do this, we use a parametric approach based on conditional distributions of the wages in function of some auxiliary information, as well as a counterfactual distribution. We show in our simulation studies that the use of auxiliary information well correlated with the wages reduces the variance of the counterfactual quantile estimates compared to those of the competitors. Since, in general, wage distributions are heavy-tailed, the interest is to model wages by using heavy-tailed distributions like the GB2 distribution. We illustrate the approach using this distribution and the wages for men and women using simulated and real data from the Swiss Federal Statistical Office.
Identifiants
https://libra.unine.ch/handle/123456789/31762
_
https://doi.org/10.1007/s11749-023-00885-8
Autre version
https://rdcu.be/dnftn
Type de publication
journal article
Dossier(s) à télécharger
 main article: s11749-023-00885-8.pdf (2.68 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00