Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Statistical and Comparative Evaluation of Various Indexing and Search Models
 
  • Details
Options
Vignette d'image

Statistical and Comparative Evaluation of Various Indexing and Search Models

Auteur(s)
Abdou, Samir
Savoy, Jacques 
Institut d'informatique 
Date de parution
2006
In
Lecture Notes in Computer Science (LNCS), Springer, 2006/4182//362-373
Résumé
This paper first describes various strategies (character, bigram, automatic segmentation) used to index the Chinese (ZH), Japanese (JA) and Korean (KR) languages. Second, based on the NTCIR-5 test-collections, it evaluates various retrieval models, varying from classical vector-space models to more recent developments in probabilistic and language models. While no clear conclusion was reached for the Japanese language, the bigram-based indexing strategy seems to be the best choice for Korean, and the combined ”unigram & bigram” indexing strategy is best for traditional Chinese. On the other hand, <i>Divergence from Randomness</i> (DFR) probabilistic model usually results in the best mean average precision. Finally, upon an evaluation of the four different statistical tests, we find that their conclusions correlate, even more when comparing the non-parametric bootstrap with the t-test.
Identifiants
https://libra.unine.ch/handle/123456789/14406
_
10.1007/11880592
Type de publication
journal article
Dossier(s) à télécharger
 main article: Abdou_Samir_-_Statistical_and_Comparative_Evaluation_of_Various_20100208.pdf (675.14 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00