Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Lower bounds for the first eigenvalue of the magnetic Laplacian
 
  • Details
Options
Vignette d'image

Lower bounds for the first eigenvalue of the magnetic Laplacian

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Savo, Alessandro
Date de parution
2018-5-17
In
Journal of Functional Analysis
Vol.
10
No
274
De la page
2818
A la page
2845
Résumé
We consider a Riemannian cylinder $\Omega$ endowed with a closed potential $1$-form $A$ and study the magnetic Laplacian $\Delta_A$ with magnetic Neumann boundary conditions associated with those data. We establish a sharp lower bound for the first eigenvalue and show that the equality characterizes the situation where the metric is a product. We then look at the case of a planar domain bounded by two closed curves and obtain an explicit lower bound in terms of the geometry of the domain. We finally discuss sharpness of this last estimate.
Lié au projet
Geometric Spectral Theory 
Identifiants
https://libra.unine.ch/handle/123456789/26422
_
10.1016/j.jfa.2018.02.012
Type de publication
journal article
Dossier(s) à télécharger
 main article: 2020-05-23_777_2541.pdf (500.54 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00