Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Isometric group actions on hilbert spaces: Growth of cocycles
 
  • Details
Options
Vignette d'image

Isometric group actions on hilbert spaces: Growth of cocycles

Auteur(s)
De Cornulier, Yves
Tessera, Romain
Valette, Alain 
Institut de mathématiques 
Date de parution
2007
In
Geometric and Functional Analysis
Vol.
3
No
17
De la page
770
A la page
792
Mots-clés
  • Haagerup property
  • a-T-menability
  • amenability
  • growth of cocycles
  • Hilbert distances
  • geometric group theory
  • Bernstein functions
  • LARGE-SCALE GEOMETRY
  • UNITARY REPRESENTATIONS
  • BANACH-SPACES
  • METRIC-SPACES
  • LIE-GROUPS
  • 1-COHOMOLOGY
  • Haagerup property

  • a-T-menability

  • amenability

  • growth of cocycles

  • Hilbert distances

  • geometric group theor...

  • Bernstein functions

  • LARGE-SCALE GEOMETRY

  • UNITARY REPRESENTATIO...

  • BANACH-SPACES

  • METRIC-SPACES

  • LIE-GROUPS

  • 1-COHOMOLOGY

Résumé
We study growth of 1-cocycles of locally compact groups, with values in unitary representations. Discussing the existence of 1-cocycles with linear growth, we obtain the following alternative for a class of amenable groups G containing polycyclic groups and connected amenable Lie groups: either G has no quasi-isometric embedding into a Hilbert space, or G admits a proper cocompact action on some Euclidean space. On the other hand, noting that almost coboundaries (i.e. 1-cocycles approximable by bounded 1-cocycles) have sublinear growth, we discuss the converse, which turns out to hold for amenable groups with "controlled" Folner sequences; for general amenable groups we prove the weaker result that 1-cocycles with sufficiently small growth are almost coboundaries. Besides, we show that there exist, on a-T-menable groups, proper cocycles with arbitrary small growth.
Identifiants
https://libra.unine.ch/handle/123456789/13884
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00