Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Extremal g-invariant eigenvalues of the Laplacian of g-invariant metrics
 
  • Details
Options
Vignette d'image

Extremal g-invariant eigenvalues of the Laplacian of g-invariant metrics

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Dryden, Emily B
El Soufi, Ahmad
Date de parution
2008-12-21
In
Mathematische Zeitschrift
Vol.
1
No
258
De la page
29
A la page
41
Mots-clés
  • laplacian
  • eigenvalue
  • invariant
  • extremal metric
  • upper bound
  • 1ST EIGENVALUE
  • RIEMANNIAN-MANIFOLDS
  • MINIMAL IMMERSIONS
  • CONFORMAL
  • CLASS
  • SURFACES
  • SPECTRUM
  • BOUNDS
  • laplacian

  • eigenvalue

  • invariant

  • extremal metric

  • upper bound

  • 1ST EIGENVALUE

  • RIEMANNIAN-MANIFOLDS

  • MINIMAL IMMERSIONS

  • CONFORMAL

  • CLASS

  • SURFACES

  • SPECTRUM

  • BOUNDS

Résumé
The study of extremal properties of the spectrum often involves restricting the metrics under consideration. Motivated by the work of Abreu and Freitas in the case of the sphere S-2 endowed with S-1-invariant metrics, we consider the subsequence lambda(G)(k) of the spectrum of a Riemannian manifold M which corresponds to metrics and functions invariant under the action of a compact Lie group G. If. G has dimension at least 1, we show that the functional lambda(G)(k) admits no extremal metric under volume-preserving G-invariant deforma- tions. If, moreover, M has dimension at least three, then the functional lambda(G)(k) is unbounded when restricted to any conformal class of G-invariant metrics of fixed volume. As a special case of this, we can consider the standard 0(n)-action on S-n; however, if we also require the metric to be induced by an embedding of S-n in Rn+1, we get an optimal upper bound on lambda(G)(k).
Identifiants
https://libra.unine.ch/handle/123456789/8552
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00