Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Tool Wear Monitoring Using Multi-sensor Time Series and Machine Learning
 
  • Details
Options
Vignette d'image

Tool Wear Monitoring Using Multi-sensor Time Series and Machine Learning

Auteur(s)
Jonathan Dreyer
Stefano Carrino
Hatem Ghorbel
Cotofrei, Paul 
Institut du management de l'information 
Date de parution
2023-12-15
In
Progress in Artificial Intelligence
De la page
497
A la page
510
Revu par les pairs
true
Mots-clés
  • Tool wear monitoring
  • Milling machining
  • Multi-sensors timeseries
  • Machine learning
  • Tool wear monitoring

  • Milling machining

  • Multi-sensors timeser...

  • Machine learning

Résumé
In the milling process of micro-machining, the optimization process is one of the keys to reduce production cost. By monitoring the tool wear and detecting when it is no longer acceptable, the machining process can be adjusted more accurately. This research explores four approaches using different machine learning models to predict machining tool wear during the milling process. The study is based on a dataset created with a face milling operation on
stainless steel (AISI 303) round material. The machining is divided into a number of stairs and is performed with a 3mm tungsten carbide. Three different types of sensors are used to measure the wearing process, with acoustic emission, accelerometers and axis currents. The better approach achieved a f1-score of 73% on five classes with a Extra Trees Classifier.
Nom de l'événement
EPIA 2023
Lieu
Faial Island, Portugal
Identifiants
https://libra.unine.ch/handle/123456789/32332
_
10.1007/978-3-031-49011-8_39
Type de publication
conference paper
Dossier(s) à télécharger
 main article: article-cameraready-v0.1.pdf (1.18 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00