Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Vertex-reinforced random walks and a conjecture of pemantle
 
  • Details
Options
Vignette d'image

Vertex-reinforced random walks and a conjecture of pemantle

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Date de parution
1997
In
Annals of Probability
Vol.
1
No
25
De la page
361
A la page
392
Mots-clés
  • reinforced random walks
  • random perturbations of dynamical systems
  • chain recurrence
  • attractors
  • STOCHASTIC APPROXIMATIONS
  • ALGORITHMS
  • DYNAMICS
  • reinforced random wal...

  • random perturbations ...

  • chain recurrence

  • attractors

  • STOCHASTIC APPROXIMAT...

  • ALGORITHMS

  • DYNAMICS

Résumé
We discuss and disprove a conjecture of Pemantle concerning vertex-reinforced random walks. The setting is a general theory of non-Markovian discrete-time random processes on a finite space E = {1,...,d}, for which the transition probabilities at each step are influenced by the proportion of times each state has been visited. It is shown that, under mild conditions, the asymptotic behavior of the empirical occupation measure of the process is precisely related to the asymptotic behavior of some deterministic dynamical system induced by a vector field on the d - 1 unit simplex. In particular, any minimal attractor of this vector field has a positive probability to be the Limit set of the sequence of empirical occupation measures. These properties are used to disprove a conjecture and to extend some results due to Pemantle. Some applications to edge-reinforced random walks are also considered.
Identifiants
https://libra.unine.ch/handle/123456789/6214
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1024404292.pdf (191.74 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00