Options
Hydrotectonics and fault criticality analysis in karstic regions from microseismic and hydrogeological observations
Date de parution
2024
Nombre de page
235
Mots-clés
Résumé
Cette étude vise à évaluer la criticalité des failles dans les régions karstiques en combinant l’analyse de données hydrogéologiques et microsismiques, à améliorer la compréhension des interactions entre l’activité sismique et la circulation des eaux souterraines et à utiliser ces connaissances pour estimer l’état de contrainte actuel de la croûte supérieure. Ces objectifs sont motivés par les préoccupations actuelles concernant la sismicité induite et les risques qui y sont associés dans des projets tels que l’exploitation de l’énergie géothermique profonde, la séquestration de CO2 ou encore l’enfouissement des déchets radioactifs. Dans le contexte de la sismicité induite, l’eau joue un rôle majeur en influençant les contraintes effectives, et donc la stabilité des failles. Si la sismicité induite par l’Homme est souvent observée dans les cas d’injection d’eaux usées ou de stimulation de réservoirs, la sismicité induite naturellement peut également être observée à la suite d’intense période de recharge, en particulier en zone karstique où l’effet de canalisation des conduits karstiques a une influence majeure sur la pression interstitielle. Ainsi, en combinant des données hydrogéologiques aux données de sismicité naturelle, il est possible d’obtenir des informations sur l’interaction de la circulation des fluides et la stabilité des failles. Pour atteindre ces objectifs, la phase initiale du projet consiste à identifier et à quantifier les mécanismes susceptibles de déclencher un séisme à la suite d’une recharge importante (événement pluvieux ou fonte des neiges) dans les régions karstiques. Les mécanismes identifiés sont 1) une augmentation de la charge verticale due à l’eau supplémentaire dans les conduits karstiques, 2) une augmentation de la pression interstitielle suite à une déformation poro-elastic résultant de la charge supplémentaire, 3) une augmentation massive de la pression interstitielle résultant de la connexion hydrogéologique directe entre l’eau infiltrée et la profondeur focale et 4) un processus de diffusion de pression. Ces mécanismes, qu’ils agissent seuls ou ensemble, influencent la pression interstitielle, mais le moment auquel ils agissent varie. La réponse de la pression suite à une augmentation de la charge hydraulique est instantanée pour les mécanismes 1 à 3, mais retardée pour le mécanisme 4. L’utilisation de données provenant de 3 études de cas ainsi que des solutions analytiques 1D permettant de calculer la variation de la pression interstitielle suite à une augmentation massive de la charge hydraulique permet d’identifier quel processus est le plus susceptible de générer un séisme à la suite de fortes précipitations. En parallèle à cette première phase du projet, un réseau de surveillance sismique et hydrogéologique est déployé dans le Jura Neuchâtelois afin de créer un catalogue sismique et de collecter les débits des principales sources karstiques de la région, utilisés comme indicateurs des variations du niveau des eaux souterraines. Ces deux ensembles de données sont ensuite combinés et un lien statistiquement significatif est trouvé entre des périodes de hautes eaux souterraines et l’activité sismique. Une analyse détaillée de l’activité sismique des différentes zones de faille étudiées ainsi que des événements induits par la pluie qui leur sont associés est réalisée. En utilisant les solutions analytiques mentionnées ci-dessus, les variations de pressions interstitielles sont calculées pour chaque zone de faille au moment de la rupture et une valeur seuil au-delà de laquelle un séisme est envisageable, est définie pour chaque faille. Bien que la majorité des failles étudiées montre une certaine activité à la suite d’intenses précipitations, les tremblements de terre ne se produisent pas de manière régulière. L’identification des évènements induits par la pluie, le seuil de détection des tremblements de terre ou encore les propriétés hydromécaniques des failles peuvent expliquer ce manque de cohérence. En intégrant ces connaissances au contexte géologique et hydrogéologique de la région, un modèle conceptuel hydromécanique est établi.
Dans la dernière partie de ce travail, l’état des contraintes actuelles de la croûte superficielle est estimé à l’aide de deux méthodes distinctes et une gamme de valeurs et d’orientations, dont les résultats sont en accord avec des études antérieurs, sont présentées. En conclusion, ce travail souligne l’importance de prendre en compte le contexte hydrogéologique d’une région lors de discussion sur la sismicité induite par la pluie, car l’effet de la canalisation des conduits karstiques augmente considérablement la pression interstitielle en profondeur, et a par conséquent une influence majeure sur la valeur seuil identifiée. Cette étude contribue également à une meilleure compréhension de l’activité sismique aux abords du lac de Neuchâtel et de la manière dont le contexte géologique et hydrogéologique l’influence.
ABSTRACT
This study aims at assessing fault criticality in karstic regions through the analysis of hydrogeological and microseismic data, at enhancing the understanding of interactions between seismic activity and groundwater circulation and using this insight to estimate the present-day stress state of the shallow crust. These objectives are prompted by the present concerns regarding induced seismicity and its associated risks in projects involving for example deep geothermal energy exploitation, CO2 sequestration or radioactive waste disposal. In the context of induced seismicity, fluids play a major role by influencing the effective stresses and thus fault stability. While human-induced seismicity is often observed in cases of waste water injection or reservoir stimulation, naturally triggered seismicity following seasonal recharge can also be observed, especially in karstic areas where the channeling effect of karst conduits has a major influence on pore pressure. Thus, combining natural seismicity and hydrogeological data can inform on the interaction between fluid flow and fault rupture. To fulfill these goals, the initial phase involves the identification and the quantification of what mechanisms may trigger seismicity following an important recharge period (heavy precipitation or snow melt) in karstic regions. The identified mechanisms are 1) an increasing vertical load due to the additional water within the karst conduits, 2) poro-elastic deformation resulting from the additional load, 3) a massive pore pressure increase resulting from a direct hydrogeological connection between the infiltrated water and focal depth and 4) pressure diffusion process. These mechanisms, whether they act alone or together, influence the pore pressure, however the timing of their effectiveness varies. The response of the pore pressure to an increasing hydraulic head is instantaneous for mechanism 1-3 but delayed for 4. Using data from 3 test sites and 1D analytical solutions to calculate pore pressure response to an increasing hydraulic head allows to determine, which process is more likely to trigger seismicity following heavy rainfalls. In parallel to this initial phase, a seismic and hydrogeological monitoring network is deployed in the Neuchˆatel Jura to create a seismic catalog and collect continuous flow rates from major karstic springs, which is used as proxy for groundwater level variations. These two data sets are then combined and a statistically significant link is found between high groundwater conditions and seismic activity. A detailed analysis of the seismic activity of the analyzed fault zones and their associated rain-triggered events, coupled with the afore-mentioned 1D analytical solutions is then performed. For each fault zone a triggering pore pressure increase is defined and used to determine the sensitivity of the faults to hydraulic head variations. Although the majority of the investigated faults show some activity following important precipitations, events do not occur on a regular basis. The identification of rain-triggered events, the detection threshold of seismic events as well as hydromechanical properties of the faults may explain this lack of consistency. Integrating this knowledge, together with the overall seismic activity of the region and the geological and hydrogeological context, a conceptual hydromechanical model for the study area is presented. Finally, the state of stress of the shallow crust is estimated using two distinct methods and a range of values and orientations is presented.
As a conclusion, this study mainly stresses the importance of considering the hydrogeological context when discussing rain-triggered seismicity, as the channeling effect of karst conduits drastically increases the pore pressure at depth, and consequently has a major influence on the magnitude of the triggering pore pressure. This study also contributes to a higher understanding of the seismic activity near Lake Neuchˆatel and how it is influenced by the geological and hydrogeological context.
Dans la dernière partie de ce travail, l’état des contraintes actuelles de la croûte superficielle est estimé à l’aide de deux méthodes distinctes et une gamme de valeurs et d’orientations, dont les résultats sont en accord avec des études antérieurs, sont présentées. En conclusion, ce travail souligne l’importance de prendre en compte le contexte hydrogéologique d’une région lors de discussion sur la sismicité induite par la pluie, car l’effet de la canalisation des conduits karstiques augmente considérablement la pression interstitielle en profondeur, et a par conséquent une influence majeure sur la valeur seuil identifiée. Cette étude contribue également à une meilleure compréhension de l’activité sismique aux abords du lac de Neuchâtel et de la manière dont le contexte géologique et hydrogéologique l’influence.
ABSTRACT
This study aims at assessing fault criticality in karstic regions through the analysis of hydrogeological and microseismic data, at enhancing the understanding of interactions between seismic activity and groundwater circulation and using this insight to estimate the present-day stress state of the shallow crust. These objectives are prompted by the present concerns regarding induced seismicity and its associated risks in projects involving for example deep geothermal energy exploitation, CO2 sequestration or radioactive waste disposal. In the context of induced seismicity, fluids play a major role by influencing the effective stresses and thus fault stability. While human-induced seismicity is often observed in cases of waste water injection or reservoir stimulation, naturally triggered seismicity following seasonal recharge can also be observed, especially in karstic areas where the channeling effect of karst conduits has a major influence on pore pressure. Thus, combining natural seismicity and hydrogeological data can inform on the interaction between fluid flow and fault rupture. To fulfill these goals, the initial phase involves the identification and the quantification of what mechanisms may trigger seismicity following an important recharge period (heavy precipitation or snow melt) in karstic regions. The identified mechanisms are 1) an increasing vertical load due to the additional water within the karst conduits, 2) poro-elastic deformation resulting from the additional load, 3) a massive pore pressure increase resulting from a direct hydrogeological connection between the infiltrated water and focal depth and 4) pressure diffusion process. These mechanisms, whether they act alone or together, influence the pore pressure, however the timing of their effectiveness varies. The response of the pore pressure to an increasing hydraulic head is instantaneous for mechanism 1-3 but delayed for 4. Using data from 3 test sites and 1D analytical solutions to calculate pore pressure response to an increasing hydraulic head allows to determine, which process is more likely to trigger seismicity following heavy rainfalls. In parallel to this initial phase, a seismic and hydrogeological monitoring network is deployed in the Neuchˆatel Jura to create a seismic catalog and collect continuous flow rates from major karstic springs, which is used as proxy for groundwater level variations. These two data sets are then combined and a statistically significant link is found between high groundwater conditions and seismic activity. A detailed analysis of the seismic activity of the analyzed fault zones and their associated rain-triggered events, coupled with the afore-mentioned 1D analytical solutions is then performed. For each fault zone a triggering pore pressure increase is defined and used to determine the sensitivity of the faults to hydraulic head variations. Although the majority of the investigated faults show some activity following important precipitations, events do not occur on a regular basis. The identification of rain-triggered events, the detection threshold of seismic events as well as hydromechanical properties of the faults may explain this lack of consistency. Integrating this knowledge, together with the overall seismic activity of the region and the geological and hydrogeological context, a conceptual hydromechanical model for the study area is presented. Finally, the state of stress of the shallow crust is estimated using two distinct methods and a range of values and orientations is presented.
As a conclusion, this study mainly stresses the importance of considering the hydrogeological context when discussing rain-triggered seismicity, as the channeling effect of karst conduits drastically increases the pore pressure at depth, and consequently has a major influence on the magnitude of the triggering pore pressure. This study also contributes to a higher understanding of the seismic activity near Lake Neuchˆatel and how it is influenced by the geological and hydrogeological context.
Notes
Thesis advisors: Prof. Benoˆıt Valley
Dr. Giona Preisig
Examiners: Prof. Stephen A. Miller
Prof. Jon Mosar
Dr. Toni Kraft
Defended on : 27th of October 2023
No de thèse : 3097
Dr. Giona Preisig
Examiners: Prof. Stephen A. Miller
Prof. Jon Mosar
Dr. Toni Kraft
Defended on : 27th of October 2023
No de thèse : 3097
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger