Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Vanishing and non-vanishing for the first L
 
  • Details
Options
Vignette d'image

Vanishing and non-vanishing for the first L

Auteur(s)
Bourdon, Marc
Martin, Florian
Valette, Alain 
Institut de mathématiques 
Date de parution
2005
In
Commentarii Mathematici Helvetici
Vol.
2
No
80
De la page
377
A la page
389
Mots-clés
  • group cohomology
  • L-P -cohomology
  • CAT(-1) space
  • critical exponent
  • GROUP COHOMOLOGY
  • REPRESENTATIONS
  • DIMENSION
  • RIGIDITY
  • group cohomology

  • L-P -cohomology

  • CAT(-1) space

  • critical exponent

  • GROUP COHOMOLOGY

  • REPRESENTATIONS

  • DIMENSION

  • RIGIDITY

Résumé
We prove two results on the first L-P-cohomology (H) over bar (1)((p))(Gamma) of a finitely generated group Gamma: 1) If N subset of H subset of Gamma is a chain of subgroups, with N non-amenable and normal in Gamma, then (H) over bar (1)((P))(Gamma) = 0 as soon as (H) over bar (1)((P))(H) = 0. This allows for a short proof of a result of W. Luck: if N < Gamma, N is infinite, finitely generated as a group, and Gamma/N contains an element of infinite order, then (H) over bar (1)((2))(Gamma) = 0. 2) If Gamma acts isometrically, properly discontinuously on a proper CAT(- 1) space X, with at least 3 limit points in theta X, then for p larger than the critical exponent e(Gamma) of Gamma in X, one has (H) over bar (1)((p)) not equal A 0. As a consequence we extend a result of Y Shalom: let G be a cocompact lattice in a rank 1 simple Lie group; if G is isomorphic to Gamma, then e(G) < e(Gamma).
Identifiants
https://libra.unine.ch/handle/123456789/13874
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00