Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Numerical methods for estimating linear econometric models
 
  • Details
Options
Vignette d'image

Numerical methods for estimating linear econometric models

Auteur(s)
Foschi, Paolo
Editeur(s)
Nägeli, Hans-Heinrich 
Institut d'informatique 
Kontoghiorghes, Erricos John
Date de parution
2003
Résumé
The estimation of the Seemingly Unrelated Regressions (SUR) model and its variants is a core area of econometrics. The purpose of this thesis is the investigation and development of efficient numerical and computational methods for solving large-scale SUR models. Specifically, its aim is twofold: firstly to continue past successful research into the design of numerically efficient methods for estimating the basic SUR model; secondly to extend these methods to variants and special cases of that model. The basic computational formulae for deriving the estimators of SUR models involve Kronecker products and direct sum of matrices that make the solution of the models computationally expensive even for modest sized models. Alternative numerical methods, which substantially reduce the computational burden of the estimation procedures, are proposed. Such methods successfully tackle the estimation of the basic SUR model, and that of SUR models derived from VAR(p) processes, SUR models with VAR disturbances, SUR models with unequal size observations and SUR models with orthogonal regressors. The proposed methods are based on orthogonal transformations, and thus, results to be numerically stable. Furthermore, they do not require the common assumption, which is usually made in most theoretical analyses, that the disturbance covariance matrix be non-singular.
Notes
Thèse de doctorat : Université de Neuchâtel : 2003 ; 1746
Identifiants
https://libra.unine.ch/handle/123456789/19566
_
10.35662/unine-thesis-1746
Type de publication
doctoral thesis
Dossier(s) à télécharger
 these_FoschiP.pdf (742.55 KB)
 main article: these_FoschiP.pdf (742.55 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00