Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Bandits Meet Mechanism Design to Combat Clickbait in Online Recommendation
 
  • Details
Options
Vignette d'image

Bandits Meet Mechanism Design to Combat Clickbait in Online Recommendation

Auteur(s)
Thomas Kleine Buening
Aadirupa Saha
Dimitrakakis, Christos 
Institut d'informatique 
Haifen Xu
Date de parution
2024
In
The Twelfth International Conference on Learning Representations
De la page
1
A la page
29
Mots-clés
  • bandits
  • mechanism design
  • incentive-aware learning
  • nash equilibrium
  • bandits

  • mechanism design

  • incentive-aware learn...

  • nash equilibrium

Résumé
We study a strategic variant of the multi-armed bandit problem, which we coin the strategic click-bandit. This model is motivated by applications in online recommendation where the choice of recommended items depends on both the click-through rates and the post-click rewards. Like in classical bandits, rewards follow a fixed unknown distribution. However, we assume that the click-rate of each arm is chosen strategically by the arm (e.g., a host on Airbnb) in order to maximize the number of times it gets clicked. The algorithm designer does not know the post-click rewards nor the arms' actions (i.e., strategically chosen click-rates) in advance, and must learn both values over time. To solve this problem, we design an incentive-aware learning algorithm, UCB-S, which achieves two goals simultaneously: (a) incentivizing desirable arm behavior under uncertainty; (b) minimizing regret by learning unknown parameters. We approximately characterize all Nash equilibria of the arms under UCB-S and show a $\tilde{\mathcal{O}} (\sqrt{KT})$ regret bound uniformly in every equilibrium. We also show that incentive-unaware algorithms generally fail to achieve low regret in the strategic click-bandit. Finally, we support our theoretical results by simulations of strategic arm behavior which confirm the effectiveness and robustness of our proposed incentive design
Nom de l'événement
ICLR 2024
Lieu
Vienna, Austria
Identifiants
https://libra.unine.ch/handle/123456789/33261
Type de publication
conference paper
Dossier(s) à télécharger
 main article: 6260_Bandits_Meet_Mechanism_De.pdf (3.26 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00