Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Stochastic persistence in degenerate stochastic Lotka-Volterra food chains
 
  • Details
Options
Vignette d'image

Stochastic persistence in degenerate stochastic Lotka-Volterra food chains

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Bourquin, Antoine 
Institut de mathématiques 
Dang H. Nguyen
Date de parution
2020-12-02T13:55:41Z
Mots-clés
  • math.PR
  • math.PR

Résumé
We consider a Lotka-Volterra food chain model with possibly intra-specific competition in a stochastic environment represented by stochastic differential equations. In the non-degenerate setting, this model has already been studied by A. Hening and D. Nguyen. They provided conditions for stochastic persistence and extinction. In this paper, we extend their results to the degenerate situation in which the top or the bottom species is subject to random
perturbations. Under the persistence condition, there exists a unique invariant probability measure supported by the interior of $\mathbb{R}_+^n$ having a smooth density.
Moreover, we study a more general model, in which we give new conditions which make it possible to characterise the convergence of the semi-group towards the unique invariant probability measure either at an exponential rate
or at a polynomial one. This will be used in the stochastic Lotka-Volterra food chain to see that if intra-specific competition occurs for all species, the rate of convergence is exponential while in the other cases it is polynomial.
Identifiants
https://libra.unine.ch/handle/123456789/32617
_
2012.01215v3
Type de publication
preprint
Dossier(s) à télécharger
 main article: Benaim22.pdf (342.83 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00