Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Online adaptive policies for ensemble classifiers
 
  • Details
Options
Vignette d'image

Online adaptive policies for ensemble classifiers

Auteur(s)
Dimitrakakis, Christos 
Institut d'informatique 
Samy Bengio
Date de parution
2005
In
Neurocomputing
Vol.
64
De la page
211
A la page
221
Mots-clés
  • Neural networks
  • Supervised learning
  • Reinforcement learning
  • Ensembles
  • Mixture of experts
  • Boosting
  • Q-learning
  • Neural networks

  • Supervised learning

  • Reinforcement learnin...

  • Ensembles

  • Mixture of experts

  • Boosting

  • Q-learning

Résumé
Ensemble algorithms can improve the performance of a given learning algorithm through the combination of multiple base classifiers into an ensemble. In this paper, we attempt to train and combine the base classifiers using an adaptive policy. This policy is learnt through a Q-learning inspired technique. Its effectiveness for an essentially supervised task is demonstrated by experimental results on several UCI benchmark databases.
Identifiants
https://libra.unine.ch/handle/123456789/30991
_
10.1016/j.neucom.2004.11.031
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1-s2.0-S0925231204005144-main.pdf (244.62 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00