Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. K-theory for C*-algebras of one-relator groups
 
  • Details
Options
Vignette d'image

K-theory for C*-algebras of one-relator groups

Auteur(s)
Béguin, Cedric
Bettaieb, Hela
Valette, Alain 
Institut de mathématiques 
Date de parution
1999
In
K-Theory
Vol.
3
No
16
De la page
277
A la page
298
Mots-clés
  • one-relator groups

  • reduced C*-algebra

  • Baum-Connes conjectur...

  • K-amenability

  • CROSSED-PRODUCTS

  • DISCRETE-GROUPS

Résumé
We compute the K-theory groups of the reduced C*-algebra C-r*(Gamma) of a one-relator group Gamma. We prove that every such group is K-amenable in the sense of Cuntz. For a torsion-free one-relator group Gamma = [X\r] such that, is not a product of commutators, we give a direct proof of the fact that the Baum-Connes analytical assembly map mu(i)(Gamma): K-i(B Gamma) --> K-i(C-r*(Gamma)) (i = 0,1) is an isomorphism. From recent results of Oyono and Tu, we deduce that the Baum-Connes conjecture with coefficients holds for any one-relator group, as well as for fundamental groups of Haken 3-manifolds (e.g. for all knot groups). In particular, if Gamma is a torsion-free group in one of these classes, then C-r*(Gamma) has no nontrivial idempotent. Mathematics Subject Classifications (1991): 20F05, 20E06, 46L80, 55N15.
URI
https://libra.unine.ch/handle/123456789/13860
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final