Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Numerical Optimization of Eigenvalues of the Dirichlet–Laplace Operator on Domains in Surfaces
 
  • Details
Options
Vignette d'image

Numerical Optimization of Eigenvalues of the Dirichlet–Laplace Operator on Domains in Surfaces

Auteur(s)
Straubhaar, Régis 
Institut de mathématiques 
Date de parution
2014-4-24
In
Computational Methods in Applied Mathematics
Vol.
3
No
14
De la page
393
A la page
409
Mots-clés
  • Spectral Geometry

  • Dirichlet–Laplace Ope...

  • Eigenvalues

  • Numerical Approximati...

  • Shape Optimization

  • Finite Element Method...

  • Uzawa Algorithm

Résumé
Let (M,g) be a smooth and complete surface, Ω⊂M be a domain in M, and Δg be the Laplace operator on M. The spectrum of the Dirichlet–Laplace operator on Ω is a sequence 0<λ1(Ω)≤λ2(Ω)≤⋯↗∞. A classical question is to ask what is the domain Ω∗ which minimizes λm(Ω) among all domains of a given area, and what is the value of the corresponding λm(Ω∗m). The aim of this article is to present a numerical algorithm using shape optimization and based on the finite element method to find an approximation of a candidate for Ω∗m. Some verifications with existing numerical results are carried out for the first eigenvalues of domains in ℝ2. Furthermore, some investigations are presented in the two-dimensional sphere to illustrate the case of the positive curvature, in hyperbolic space for the negative curvature and in a hyperboloid for a non-constant curvature.
Lié au projet
Analysis and geometry: groups, actions, manifolds, spectra 
URI
https://libra.unine.ch/handle/123456789/21403
DOI
10.1515/cmam-2014-0009
Autre version
http://dx.doi.org/10.1515/cmam-2014-0009
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final