Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. The Traveling Pilot Point method. A novel approach to parameterize the inverse problem for categorical fields
 
  • Details
Options
Vignette d'image

The Traveling Pilot Point method. A novel approach to parameterize the inverse problem for categorical fields

Auteur(s)
Khambhammettu, Prashanth
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Doherty, John
Date de parution
2020-2
In
Advances in Water Resources
No
138
De la page
103556
A la page
103570
Revu par les pairs
1
Mots-clés
  • Inverse problem

  • Categorical inversion...

  • Traveling pilot point...

  • Multiple-point statis...

  • Null Space Monte Carl...

  • Linear sub-space meth...

Résumé
Categorical parameter distributions are common-place in hydrogeological systems consisting of geologic fa cies/categories with distinct properties, e.g., high-permeability channels embedded in a low-permeability ma trix. Parameter estimation is difficult in such systems because the discontinuities in the parameter space hinder the inverse problem. Previous research in this area has been focused on the use of stochastic methods. In this paper, we present a novel approach based on Traveling Pilot points (TRIPS) combined with subspace parameter estimation methods to generate realistic categorical parameter distributions that honor calibration constraints (e.g., - measured water levels). In traditional implementations, aquifer properties (e.g., hydraulic conductivity) are estimated at fixed pilot point locations. In the TRIPS implementation, both the properties associated with the pilot points and their locations are estimated. Tikhonov regularization constraints are incorporated in the param eter estimation process to produce realistic parameter depictions. For a synthetic aquifer system, we solved the categorical inverse problem by combining the TRIPS methodology with two subspace methods: Null Space Monte Carlo (NSMC) and Posterior Covariance (PC). A posterior ensemble developed with the rejection sampling (RS) method is compared against the TRIPS ensembles. The comparisons indicated similarities between the various ensembles and to the reference parameter distribution. Between the two subspace methods, the NSMC method produced an ensemble with more variability than the PC method. These preliminary results suggest that the TRIPS methodology has promise and could be tested on more complicated problems.
URI
https://libra.unine.ch/handle/123456789/30442
DOI
10.1016/j.advwatres.2020.103556
Autre version
https://doi.org/10.1016/j.advwatres.2020.103556
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger
 main article: 2023-01-19_110_2098.pdf (6.05 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final