Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. On the Haagerup inequality and groups acting on Ã
 
  • Details
Options
Vignette d'image

On the Haagerup inequality and groups acting on Ã

Auteur(s)
Valette, Alain 
Institut de mathématiques 
Date de parution
1997
In
Annales De L'Institut Fourier
Vol.
4
No
47
De la page
1195
A la page
1208
Mots-clés
  • convolutor norm

  • random walks

  • amenability

  • growth of groups

  • Euclidean

  • buildings

  • PROPERTY

Résumé
Let Gamma be a group endowed with a length function L, and let E be a linear subspace of C Gamma. We say that E satisfies the Haagerup inequality if there exists constants C, s > 0 such that, for any f is an element of E, the convolutor norm of f on l(2)(Gamma) is dominated by C times the l(2) norm of f(l + L)(s). We show that, for E = C Gamma, the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on Gamma. If L is a word length function on a finitely generated group Gamma, we show that, if the space Rad(L)(Gamma) of radial functions with respect to L satisfies the Haagerup inequality, then Gamma is non-amenable if and only if Gamma has superpolynomial growth. We also show that the Haagerup inequality for Rad(L)(Gamma) has a purely combinatorial interpretation; thus, using the main result of the companion paper by J. Swiatkowski, we deduce that, for a group Gamma acting simply transitively on the vertices of a thick euclidean building of type (A) over tilde(n), the space Rad(L)(Gamma) satisfies the Haagerup inequality, and Gamma is non-amenable.
URI
https://libra.unine.ch/handle/123456789/13982
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final