Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. A Direct Bootstrap Method for Complex Sampling Designs from a Finite Population
 
  • Details
Options
Vignette d'image

A Direct Bootstrap Method for Complex Sampling Designs from a Finite Population

Auteur(s)
Antal, Erika 
Institut de statistique 
TillĂ©, Yves 
Institut de statistique 
Date de parution
2011-3-14
In
Journal of the American Statistical Association
Vol.
494
No
106
De la page
534
A la page
543
Résumé
In complex designs, classical bootstrap methods result in a biased variance estimator when the sampling design is not taken into account. Resampled units are usually rescaled or weighted in order to achieve unbiasedness in the linear case. In the present article, we propose novel resampling methods that may be directly applied to variance estimation. These methods consist of selecting subsamples under a completely different sampling scheme from that which generated the original sample, which is composed of several sampling designs. In particular, a portion of the subsampled units is selected without replacement, while another is selected with replacement, thereby adjusting for the finite population setting. We show that these bootstrap estimators directly and precisely reproduce unbiased estimators of the variance in the linear case in a time-efficient manner, and eliminate the need for classical adjustment methods such as rescaling, correction factors, or artificial populations. Moreover, we show via simulation studies that our method is at least as efficient as those currently existing, which call for additional adjustment. This methodology can be applied to classical sampling designs, including simple random sampling with and without replacement, Poisson sampling, and unequal probability sampling with and without replacement.
Lié au projet
Convention UniversitĂ© de Neuchâtel/Office fĂ©dĂ©ral de la statistique 
URI
https://libra.unine.ch/handle/123456789/11382
DOI
10.1198/jasa.2011.tm09767
Autre version
http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm09767
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger
 main article: 2019-09-11_951_2293.pdf (330.86 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des tĂ©moins de connexion
  • Politique de protection de la vie privĂ©e
  • Licence de l'utilisateur final