Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Algorithms for statistical model selection and robust estimation
 
  • Details
Options
Vignette d'image

Algorithms for statistical model selection and robust estimation

Auteur(s)
Hofmann, Marc
Editeur(s)
Kropf, Peter 
Institut d'informatique 
Mots-clés
  • matrix factorizations...

  • parallel algorithms

  • least squares

  • model selection

  • robust regression

  • regression trees

  • general linear model

  • seemingly unrelated r...

Résumé
Computationally intensive algorithms for model selection and robust regression are considered. Particular emphasis is put on regression trees. The QR decomposition is the main computational tool to solve the linear models. Givens rotations are employed to compute the orthogonal factorizations. A new pipelineparallel strategy is proposed for computing the QR decomposition. Algorithms for computing the best subset regression models are investigated. The algorithms extend previously introduced exhaustive and heuristic strategies, which are aimed at solving large-scale model selection problems. An algorithm is proposed to compute the exact least trimmed squares regression. It can efficiently compute the LTS estimators for a range of coverage values. Thus, the coverage parameter <i>h</i> does not need to be known in advance, and the algorithm can be used to examine the degree of contamination of the data. The LTS algorithm is extended to solve the generalized LTS estimation problem of the GLM and SUR model. The singularity problem of the dispersion matrix is avoided by reformulating the estimation problem as a generalized linear least squares problem.
Notes
Thèse de doctorat : Université de Neuchâtel, 2009 ; Th. 2103
URI
https://libra.unine.ch/handle/123456789/15024
Type de publication
Resource Types::text::thesis::doctoral thesis
Dossier(s) à télécharger
 main article: Th_HofmannM.pdf (1.54 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final