Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Fast balanced sampling for highly stratified population
 
  • Details
Options
Vignette d'image

Fast balanced sampling for highly stratified population

Auteur(s)
Hasler, Caren 
Institut de statistique 
Editeur(s)
TillĂ©, Yves 
Institut de statistique 
In
Computational Statistics and Data Analysis, Elsevier, 2014/74//81-94
Mots-clés
  • Balanced sampling

  • stratified sampling

  • Cube method

  • Unequal probability s...

  • Auxiliary information...

Résumé
Balanced sampling is a very efficient sampling design when the variable of interest is correlated to the auxiliary variables on which the sample is balanced. A procedure to select balanced samples in a stratified population has previously been proposed. Unfortunately, this procedure becomes very slow as the number of strata increases and it even fails to select samples for some large numbers of strata. A new algorithm to select balanced samples in a stratified population is proposed. This new procedure is much faster than the existing one when the number of strata is large. Furthermore, this new procedure makes it possible to select samples for some large numbers of strata, which was impossible with the existing method. Balanced sampling can then be applied on a highly stratified population when only a few units are selected in each stratum. Finally, this algorithm turns out to be valuable for many applications as, for instance, for the handling of nonresponse
URI
https://libra.unine.ch/handle/123456789/5954
DOI
10.1016/j.csda.2013.12.005
Autre version
http://dx.doi.org/10.1016/j.csda.2013.12.005
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger
 main article: Hasler_C-Fast_balances-20160624145737-UM.pdf (967.51 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des tĂ©moins de connexion
  • Politique de protection de la vie privĂ©e
  • Licence de l'utilisateur final