Options
Robot Navigation by Panoramic Vision and Attention Guided Features
Auteur(s)
Bur, A.
Editeur(s)
Tapus, A.
Ouerhani, Nabil
Siegwar, R.
Hügli, Heinz
Date de parution
2006
In
Proceedings. 18th International Conference on Pattern Recognition (ICPR), Institute of Electrical and Electronics Engineers (IEEE), 2006/1//695-698
Résumé
In visual-based robot navigation, panoramic vision emerges as a very attractive candidate for solving the localization task. Unfortunately, current systems rely on specific feature selection processes that do not cover the requirements of general purpose robots. In order to fulfil new requirements of robot versatility and robustness to environmental changes, we propose in this paper to perform the feature selection of a panoramic vision system by means of the saliency-based model of visual attention, a model known for its universality. The first part of the paper describes a localization system combining panoramic vision and visual attention. The second part presents a series of indoor localization experiments using panoramic vision and attention guided feature detection. The results show the feasibility of the approach and illustrate some of its capabilities.
Autre version
http://dx.doi.org/10.1109/ICPR.2006.998
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger