Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Antioxidant allocation modulates sperm quality across changing social environments
    In promiscuous species, male reproductive success depends on their ability to mate with fertile females and on the fertilizing ability of their sperm. In such species, theory predicts that, owing to a trade-off between pre- and post-copulatory reproductive traits, males with lesser access to females should increase resource investment into those sperm traits that enhance fertilization success–usually referred to as ejaculate quality. This prediction has been validated in several taxa, yet studies on the physiological mechanisms modulating ejaculate quality are lacking. Sperm cells are highly vulnerable to oxidative stress, which impairs male fertility. Therefore, males that better protect their sperm from oxidative stress are expected to achieve higher ejaculate quality. Based on theoretical expectations, and since social dominance is a major determinant of mating opportunity, we predicted that subordinate males should invest more into the antioxidant protection of their sperm in order to achieve higher ejaculate quality. We maintained 60 male and 60 female wild-caught house sparrows Passer domesticus in outdoor aviaries, where we experimentally manipulated male social status to test our predictions. We measured cellular oxidative stress and enzymatic antioxidant activity in blood and sperm both before and after manipulating social ranks. Before manipulating the social status, we found that ejaculate viability correlated with oxidative stress level in sperm, with dominant males producing more oxidized and less viable ejaculates. Further, males at the lower end of the hierarchy produced ejaculates of similar quality to those of dominant males, suggesting that restricted access to resources might limit male reproductive strategies. After experimentally manipulating the social status, males matched their ejaculate quality to their new rank, while increases in antioxidant investment into ejaculates paralleled increases in ejaculate viability. Oxidative stress has been proposed as a general constraint to the evolution of life histories. Our results highlight oxidative stress and strategic antioxidant allocation as important proximate physiological mechanisms underlying male reproductive strategies.
  • Publication
    Accès libre
    Badge Size Reflects Sperm Oxidative Status within Social Groups in the House Sparrow Passer domesticus
    The phenotype-linked fertility hypothesis proposes that male ornaments reflect male fertility. Male ornaments could honestly signal sperm quality due to the high susceptibility of sperm to free radicals on the one hand and the negative impact of oxidative stress on ornament elaboration on the other hand. Thus, only males with superior antioxidant defences could bear the cost of more elaborated sexual ornaments without suffering adverse fitness costs. Yet, in species where males experience differential access to fertile females, a trade-off emerges between investing into traits favouring mating opportunities (e.g. secondary sexual ornaments, social dominance, mate-guarding behaviours, etc.) or into traits favouring sperm competitive ability (e.g. sperm numbers and quality). When male sexual ornaments promote greater access to fertile females, a negative relationship can then be predicted between ornamentation and sperm quality. We tested the latter hypothesis and the phenotype-linked fertility hypothesis in wild House Sparrows Passer domesticus by exploring the relationships between sperm quality, melanin-based ornamentation, and redox status in blood and sperm. We found no correlation between badge size and sperm swimming performance. However, we found that within a social group, large-badged males better protect their ejaculates from oxidative stress, and thus produce less oxidized ejaculates. Additionally, we found that badge size did not reflect social dominance, and thus the protection of the ejaculate is independent of males’ ability to monopolize resources. Our results suggest that badge size might reflect male investment into the antioxidant protection of their sperm relative to a given social environment, and thus females may accrue both direct and indirect benefits by mating with large-badged males producing less oxidized ejaculates.