Options
Valley, Benoît
Nom
Valley, Benoît
Affiliation principale
Fonction
Professeur ordinaire
Email
benoit.valley@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 74
- PublicationAccès libreThe Role of Convective Heat and Mass Transfer in the Thermal Response of Karst Conduits(Neuchâtel : Université de Neuchâtel, 2025)
; ; Le transfert de chaleur et de masse dans les environnements karstiques est caractérisé par les interactions complexes entre les processus géologiques, hydrologiques et atmosphériques. Les systèmes karstiques facilitent le transfert de chaleur à travers des réseaux étendus de fractures souterraines, de cavités et de grottes. Ces dernières représentant des écosystèmes fragiles où les processus biogéochimiques dépendent largement de la température. Les grottes abritent également des archives environnementales précieuses dont l’interprétation dépend étroitement de la température. Une bonne compréhension de la réponse thermique du karst aux signaux atmosphériques est donc essentielle pour quantifier les taux de dissolution/précipitation du carbonate, interpréter la distribution géochimique, évaluer l'efficacité de l'extraction géothermique peu profonde et déterminer les impacts sur les organismes vivant dans les karsts. Les grottes ventilées par l’effet cheminée, où le flux d’air est entraîné par contraste de densité (température) entre l’intérieur et l’extérieur de la grotte, peuvent transférer les signaux atmosphériques à certaines distances des entrées — appelées longueur de convection — avant d'atteindre un équilibre thermique avec la roche environnante. Les signaux atmosphériques consistent en différentes fréquences, telles que les fluctuations annuelles et journalières, avec des amplitudes propres. La distribution spatiale de ces amplitudes à travers les galeries de grottes ainsi que l’étendue de l’impact thermique généré sur la roche environnante sont étudiées dans cette thèse à l’aide d’un modèle thermique démontrant que la longueur de convection est approximativement proportionnelle à l’amplitude des fluctuations annuelles du débit divisé par la racine carrée du rayon de la grotte. Ce résultat est testé avec des données de terrain provenant d’un tunnel de mine et de deux grottes. Les galeries réelles des grottes comportent de nombreux obstacles et irrégularités augmentant les coefficients de transfert locaux et les frottements par rapport à ceux calculés à partir des corrélations empiriques dérivées pour des tuyaux standard. De plus, le flux d'air peut transporter de la vapeur d'eau, entraînant des phénomènes locaux de condensation ou d'évaporation. Quatre scénarios thermiques sont conçus pour étudier ces processus complexes à l’aide de simulations numériques. Les résultats d’une année de données de terrain issues de la surveillance de la grotte de Longeaigue, en Suisse, concordent avec les résultats du modèle thermique. Enfin, un modèle aéraulique-thermique a été développé en utilisant les températures externes et la résistance aéraulique de la grotte comme entrées pour calculer le débit massique d'air dans les grottes ventilées. L’épikarst, situé dans la couche superficielle du karst, contribue au transfert rapide de l’eau de recharge à travers les fractures par flux concentré ou au transfert lent à travers la matrice rocheuse par flux diffusif. Une géométrie spéculative en 3D de l’épikarst est construite à partir de la distribution d’un réseau de fractures discrètes (DFN) et un modèle thermique simple est développé pour des conditions hydrauliques extrêmes incluant des fractures entièrement saturées et non saturées. Bien que certaines intensités de précipitations ne soient pas réalistes, elles peuvent néanmoins être utilisées comme scénarios hydrauliques extrêmes pendant une crue. Dans ces cas, le flux de chaleur convectif dans les fractures devient dominant et les modèles classiques basés sur la conduction ne peuvent pas prédire efficacement la réponse thermique de la température souterraine dans l'épikarst. Les régions karstiques sujettes au pergélisol subissent des variations de température atmosphérique dans la couche active à différentes échelles temporelles. La prédiction du taux de fonte dans les aquifères riches en glace est essentielle en raison de leur impact profond sur l’hydrogéologie, influençant à la fois la disponibilité en eau et la stabilité mécanique du sol. Une approche complète des mécanismes de transfert thermique dans ce milieu spécifique est proposée au moyen d’un modèle couplant hydraulique et thermique. Dans un réseau de fracture, la convection naturelle dans l’eau de fonte se produit en raison du comportement anormal de l’eau entre 0 et 4 °C, augmentant le taux de fonte d’environ un ordre de grandeur par rapport à un modèle basé uniquement sur la conduction dans l’eau stagnante. Les résultats du modèle sont comparés qualitativement aux données de terrain de la glacière de Monlési en Suisse et confirment l’accord entre les observations réelles et le modèle proposé lorsque la convection naturelle est prise en compte. Les résultats de cette thèse fournissent des perspectives détaillées sur les différents mécanismes de transfert de chaleur et de masse dans les systèmes karstiques en considérant le flux thermique convectif dans les conduits ventilés, les épikarsts fracturés et les fractures remplies de glace soumises aux variations de température atmosphérique. Des recherches supplémentaires sur ce sujet pourraient être facilitées par l’utilisation de modèles développés comme base pour la communauté des géosciences, de l’hydrogéologie et de la cryosphère. Abstract Heat and mass transfer in karst environments are characterized by the complex interactions between geological, hydrological, and atmospheric processes. Karst systems, facilitate unique heat transfer mechanisms through extensive networks of underground fractures, voids and caves representing fragile ecosystems where biogeochemical processes largely depend on temperature. Caves also host unique environmental records whose interpretation closely depends on temperature as well. Achieving a good understanding of the thermal response of karst to atmosphere signals is thus central to quantify dissolution/precipitation rates to interpret geochemical partitioning, to evaluate shallow geothermal extraction efficiency and to determine impacts on organisms living in karst. Ventilated caves influenced by the chimney effect, where airflow is driven by the density (temperature) contrast between the interior and exterior of the cave, can transmit atmospheric signals to specific distances from entrances—referred to as the convection length—before reaching thermal equilibrium with the surrounding rock. Atmospheric signals consist of different frequencies such as yearly and daily fluctuations with certain amplitudes. The spatial distributions of these amplitudes through cave passages as well as the extent of generated thermal impact on the surrounding rock are investigated in this thesis by developing a thermal model illustrating that the convective length is approximately proportional to the amplitude of the flowrate annual fluctuations divided by the square root of the cave radius. This result is tested against field data from a mine tunnel and two caves. The real cave passages comprise many obstacles and irregularities increasing the local transfer coefficients and friction compared to the calculated ones from empirical correlations derived for standard pipes. Furthermore, the airflow can transfer water vapor from atmosphere into the cave resulting in local condensation or evaporation. Four thermal scenarios are designed in order to study these complex processes using numerical simulations. The results of one-year field data from monitoring of Longeaigue cave in Switzerland agree with the thermal model results. Finally, an aeraulic-thermal model was developed using the external temperatures and cave aeraulic resistance as inputs calculating air mass flow rate in ventilated caves. Epikarst located at uppermost layer of karst contributes to the fast transfer of recharge water through fractures by concentrated flow or slow transfer through rock matrix by diffusive flow. A speculative 3D epikarst geometry is built based on the distribution of Discrete Fracture Network (DFN) and a simple thermal model is developed for extreme hydraulic conditions including fully saturated and unsaturated fractures. Although some rainfall intensities are unrealistically high, they can nonetheless be used as extreme hydraulic scenarios during floods. In these cases, convective heat flux in fractures becomes dominant and classical conduction-base models cannot efficiently predict thermal response of underground temperature in epikarst. Ice-clefts in karstic permafrost region experience temperature variations of atmosphere in the active layer at different time scales. The prediction of melting rate in ice-rich aquifers is essential for their profound impact on their hydrogeological properties, influencing both water availability and the mechanical stability of the ground necessitating a comprehensive understanding of heat transfer mechanisms in this specific medium by developing a fully coupled hydraulic-thermal model. Free convection in meltwater in the ice-clefts occurs due to the anomalous behavior of water between 0 and 4 ℃ increasing the melting rate by approximately an order of magnitude compared to a model based on purely conduction in stagnant water. The model outcomes are compared qualitatively with field data from Monlesi ice cave in Switzerland and confirm the agreement between real-world observations and the proposed model when free convection is considered. The results of this thesis provide more detailed insights on different aspects of heat and mass transfer mechanisms in karst systems by considering convective heat flux in ventilated conduits, fractured epikasrt and ice-filled clefts subject to atmospheric temperature variations. Further investigations on this topic can be facilitated by using the current developed models as a basis for the community of geoscience, hydrogeology, and cryosphere. - PublicationAccès libreHydrotectonics and fault criticality analysis in karstic regions from microseismic and hydrogeological observations(2024)
; Cette étude vise à évaluer la criticalité des failles dans les régions karstiques en combinant l’analyse de données hydrogéologiques et microsismiques, à améliorer la compréhension des interactions entre l’activité sismique et la circulation des eaux souterraines et à utiliser ces connaissances pour estimer l’état de contrainte actuel de la croûte supérieure. Ces objectifs sont motivés par les préoccupations actuelles concernant la sismicité induite et les risques qui y sont associés dans des projets tels que l’exploitation de l’énergie géothermique profonde, la séquestration de CO2 ou encore l’enfouissement des déchets radioactifs. Dans le contexte de la sismicité induite, l’eau joue un rôle majeur en influençant les contraintes effectives, et donc la stabilité des failles. Si la sismicité induite par l’Homme est souvent observée dans les cas d’injection d’eaux usées ou de stimulation de réservoirs, la sismicité induite naturellement peut également être observée à la suite d’intense période de recharge, en particulier en zone karstique où l’effet de canalisation des conduits karstiques a une influence majeure sur la pression interstitielle. Ainsi, en combinant des données hydrogéologiques aux données de sismicité naturelle, il est possible d’obtenir des informations sur l’interaction de la circulation des fluides et la stabilité des failles. Pour atteindre ces objectifs, la phase initiale du projet consiste à identifier et à quantifier les mécanismes susceptibles de déclencher un séisme à la suite d’une recharge importante (événement pluvieux ou fonte des neiges) dans les régions karstiques. Les mécanismes identifiés sont 1) une augmentation de la charge verticale due à l’eau supplémentaire dans les conduits karstiques, 2) une augmentation de la pression interstitielle suite à une déformation poro-elastic résultant de la charge supplémentaire, 3) une augmentation massive de la pression interstitielle résultant de la connexion hydrogéologique directe entre l’eau infiltrée et la profondeur focale et 4) un processus de diffusion de pression. Ces mécanismes, qu’ils agissent seuls ou ensemble, influencent la pression interstitielle, mais le moment auquel ils agissent varie. La réponse de la pression suite à une augmentation de la charge hydraulique est instantanée pour les mécanismes 1 à 3, mais retardée pour le mécanisme 4. L’utilisation de données provenant de 3 études de cas ainsi que des solutions analytiques 1D permettant de calculer la variation de la pression interstitielle suite à une augmentation massive de la charge hydraulique permet d’identifier quel processus est le plus susceptible de générer un séisme à la suite de fortes précipitations. En parallèle à cette première phase du projet, un réseau de surveillance sismique et hydrogéologique est déployé dans le Jura Neuchâtelois afin de créer un catalogue sismique et de collecter les débits des principales sources karstiques de la région, utilisés comme indicateurs des variations du niveau des eaux souterraines. Ces deux ensembles de données sont ensuite combinés et un lien statistiquement significatif est trouvé entre des périodes de hautes eaux souterraines et l’activité sismique. Une analyse détaillée de l’activité sismique des différentes zones de faille étudiées ainsi que des événements induits par la pluie qui leur sont associés est réalisée. En utilisant les solutions analytiques mentionnées ci-dessus, les variations de pressions interstitielles sont calculées pour chaque zone de faille au moment de la rupture et une valeur seuil au-delà de laquelle un séisme est envisageable, est définie pour chaque faille. Bien que la majorité des failles étudiées montre une certaine activité à la suite d’intenses précipitations, les tremblements de terre ne se produisent pas de manière régulière. L’identification des évènements induits par la pluie, le seuil de détection des tremblements de terre ou encore les propriétés hydromécaniques des failles peuvent expliquer ce manque de cohérence. En intégrant ces connaissances au contexte géologique et hydrogéologique de la région, un modèle conceptuel hydromécanique est établi. Dans la dernière partie de ce travail, l’état des contraintes actuelles de la croûte superficielle est estimé à l’aide de deux méthodes distinctes et une gamme de valeurs et d’orientations, dont les résultats sont en accord avec des études antérieurs, sont présentées. En conclusion, ce travail souligne l’importance de prendre en compte le contexte hydrogéologique d’une région lors de discussion sur la sismicité induite par la pluie, car l’effet de la canalisation des conduits karstiques augmente considérablement la pression interstitielle en profondeur, et a par conséquent une influence majeure sur la valeur seuil identifiée. Cette étude contribue également à une meilleure compréhension de l’activité sismique aux abords du lac de Neuchâtel et de la manière dont le contexte géologique et hydrogéologique l’influence. ABSTRACT This study aims at assessing fault criticality in karstic regions through the analysis of hydrogeological and microseismic data, at enhancing the understanding of interactions between seismic activity and groundwater circulation and using this insight to estimate the present-day stress state of the shallow crust. These objectives are prompted by the present concerns regarding induced seismicity and its associated risks in projects involving for example deep geothermal energy exploitation, CO2 sequestration or radioactive waste disposal. In the context of induced seismicity, fluids play a major role by influencing the effective stresses and thus fault stability. While human-induced seismicity is often observed in cases of waste water injection or reservoir stimulation, naturally triggered seismicity following seasonal recharge can also be observed, especially in karstic areas where the channeling effect of karst conduits has a major influence on pore pressure. Thus, combining natural seismicity and hydrogeological data can inform on the interaction between fluid flow and fault rupture. To fulfill these goals, the initial phase involves the identification and the quantification of what mechanisms may trigger seismicity following an important recharge period (heavy precipitation or snow melt) in karstic regions. The identified mechanisms are 1) an increasing vertical load due to the additional water within the karst conduits, 2) poro-elastic deformation resulting from the additional load, 3) a massive pore pressure increase resulting from a direct hydrogeological connection between the infiltrated water and focal depth and 4) pressure diffusion process. These mechanisms, whether they act alone or together, influence the pore pressure, however the timing of their effectiveness varies. The response of the pore pressure to an increasing hydraulic head is instantaneous for mechanism 1-3 but delayed for 4. Using data from 3 test sites and 1D analytical solutions to calculate pore pressure response to an increasing hydraulic head allows to determine, which process is more likely to trigger seismicity following heavy rainfalls. In parallel to this initial phase, a seismic and hydrogeological monitoring network is deployed in the Neuchˆatel Jura to create a seismic catalog and collect continuous flow rates from major karstic springs, which is used as proxy for groundwater level variations. These two data sets are then combined and a statistically significant link is found between high groundwater conditions and seismic activity. A detailed analysis of the seismic activity of the analyzed fault zones and their associated rain-triggered events, coupled with the afore-mentioned 1D analytical solutions is then performed. For each fault zone a triggering pore pressure increase is defined and used to determine the sensitivity of the faults to hydraulic head variations. Although the majority of the investigated faults show some activity following important precipitations, events do not occur on a regular basis. The identification of rain-triggered events, the detection threshold of seismic events as well as hydromechanical properties of the faults may explain this lack of consistency. Integrating this knowledge, together with the overall seismic activity of the region and the geological and hydrogeological context, a conceptual hydromechanical model for the study area is presented. Finally, the state of stress of the shallow crust is estimated using two distinct methods and a range of values and orientations is presented. As a conclusion, this study mainly stresses the importance of considering the hydrogeological context when discussing rain-triggered seismicity, as the channeling effect of karst conduits drastically increases the pore pressure at depth, and consequently has a major influence on the magnitude of the triggering pore pressure. This study also contributes to a higher understanding of the seismic activity near Lake Neuchˆatel and how it is influenced by the geological and hydrogeological context. - PublicationAccès libreTransient inverse analyses of overcoring data for improved stress estimationOvercoring is a common technique for measuring stresses in mining projects. Knowledge of the in-situ stress state is essential to ensure the stability of underground infrastructures as well as to assess the induced microseismic risk associated with deep mining operations. There are different types of overcoring probes. Some are bonded in the pilot hole with an epoxy resin and allow for 3D stress measurement (e.g. CSIRO-HI), and others are based solely on a mechanical coupling of the probe, but are limited to biaxial stress measurement (e.g. USBM). The need to glue the probe to obtain a 3D measurement limits the applicability of this technique to short boreholes because it is technically difficult to glue probes in deep boreholes. In any case, traditionally the data analysis is done only based on the final deformation obtained after overcoring. In this paper we propose to use the transient deformation response during overcoring to: (1) allow to evaluate the 3D stress field from a single biaxial overcoring measurement, and (2) add a quality control component by reproducing the entire overcoring response. The general principle of our approach is to simulate the transient response of overcoring by numerical elastic simulation. The principle of superposition is used to derive the responses for any set of parameters from a limited number of basic models and thus allows to limit the total number of model runs. Such approach allows for a systematic inversion procedure to be applied for determining the optimal parameter sets that best capture the transient response of the overcoring. This allows the estimation of a 3D stress tensor from biaxial measurements. It also allows to have a quality control on the measurements evaluating the quality of the fit between the model and the data. In this paper, we evaluate the robustness of the proposed approach by performing a systematic sensitivity analysis on the stress estimation from the inversion of transient overcoring data. We demonstrate the advantages of the approach but also its limitations. The preliminary results obtained in this study suggest that the transient overcoring response contains sufficient information for constraining efficiently the 3D stress tensor. The inversion must be performed using multiple starting point, and the mode of the obtained calibrated parameters is in close adequacy with expected values, while some outliers can be present in the calibrated set. Further work is required for confirming these encouraging results by testing of broader range of stress configurations and applying the method to actual field measurements.
- PublicationAccès libreFractal characteristics of fractures in crystalline basement rocks: Insights from depth-dependent correlation analyses to 5 km depth(2022-5-27)
;Afshari Moein, Mohammad Javad ;Evans, Keith F.; ;Bär, KristianGenter, AlbertThe scaling laws describing the spatial arrangement of fractures along six deep boreholes penetrating the crystalline rocks in the Rhine Graben were derived using a correlation analysis. Five of the wells, two to 5 km depth, were located at the Soultz geothermal site and one well to 5 km depth was located at Basel, some 150 km from Soultz. Five datasets were derived from borehole imaging logs, whilst one stemmed from the analysis of 810 m of continuous core at Soultz. The two differed inasmuch as the core dataset included essentially all fractures, whereas the image log dataset had few fractures narrower than 1–3 mm. The results of the analysis for all image datasets showed that the spatial arrangement of fractures followed fractal behavior at all scales from meters to several hundred meters, the largest scale amenable to assessment, and that the fractal dimensions were confined to the narrow range 0.85–0.9. However, the core dataset showed significant deviation from fractal behavior, the best-fit fractal dimension of 0.8 being somewhat lower than values obtained from imaging logs in neighboring wells. Eliminating fractures with apertures less than 1 mm from the core dataset to improve comparability led to even lower fractal dimension estimates, indicating the discrepancy was not due to imaging log resolution. Analysis of successive depth sections of the core log suggested the discrepancy was due to the presence of a localized zone between 1750 and 2070 m where the fractal organization is disturbed or takes a lower dimension than elsewhere. Aside from this zone, no systematic variation of fractal dimension with depth was observed in any dataset, implying that a single exponent together with intensity adequately describes the arrangement of fractures along the entire length of the boreholes. The results are relevant to the parameterization of DFN models of deep rock masses. - PublicationAccès libreA systematic methodology to calibrate wellbore failure models, estimate the in-situ stress tensor and evaluate wellbore cross-sectional geometry(2022-1-1)
; ; ;Meier, Peter; Alcolea, AndresDeep geothermal boreholes, often drilled to the crystalline basement, suffer from borehole breakouts that compromise borehole stability and/or lead to low drilling performance. These issues increase the cost of deep geothermal projects and lead to irregular cross-sectional geometries that may entangle well completion (e.g., packer isolation for zonal stimulation, cementing, etc.). Thus, the proper knowledge of rock strength, state of stress and their interactions at the closest vicinity of the borehole is key to the success of deep geothermal drilling. Typically, the magnitudes of the vertical and minimum horizontal principal stresses, 𝑆𝑣 and 𝑆ℎ𝑚𝑖𝑛, respectively, can be estimated while 𝑆𝐻𝑚𝑎𝑥 is difficult to constrain. This paper presents a systematic methodology to jointly evaluate the heterogeneous distributions of the stress tensor principal components and orientations, and the rock strength properties (e.g. cohesion, friction). Model parameters are estimated from measurements available during or shortly after drilling, i.e., breakout width, breakout extent/depth of penetration, breakout orientation and drilling induced tensile fractures. Additionally, measurements of estimated parameters or transformations of them can be considered in the calibration in a generic manner (e.g., 𝑆ℎ𝑚𝑖𝑛 interpreted from XLOT). For illustration purposes, the methodology is applied to the extensive borehole data set along the crystalline section of the borehole BS-1, in Basel (Switzerland). The methodology allows us (1) to derive plausible sets of stress and strength parameters reproducing the complex distribution of breakouts along BS-1, and (2) to unveil the paradox of having no borehole breakouts at sections with high density of natural fractures. - PublicationAccès libreAseismic deformations perturb the stress state and trigger induced seismicity during injection experiments(2021-10)
;Duboeuf, L. ;De Barros, L.; ;Guglielmi, Y. ;Cappa, F.Fluid injections can trigger seismicity even on faults that are not optimally oriented for reactivation, suggesting either sufficiently large fluid pressure or local stress perturbations. Understanding how stress field may be perturbed during fluid injections is crucial in assessing the risk of induced seismicity and the efficiency of deep fluid stimulation projects. Here, we focus on a series of in situ decametric experiments of fluid-induced seismicity, performed at 280 m depth in an underground gallery, while synchronously monitoring the fluid pressure and the activated fractures movements. During the injections, seismicity occurred on existing natural fractures and bedding planes that aremisoriented to slip relative to the background stress state,whichwas determined from the joint inversion of downhole fluid pressure and mechanical displacements measured at the injection.We then compare this background stress with the one estimated from the inversion of earthquake focal mechanisms. We find significant différences in the orientation of the stress tensor components, thus highlighting local perturbations. After discussing the influence of the gallery, the pore pressure variation and the geology, we show that the significant stress perturbations induced by the aseismic deformation (which represents more than 96 per cent of the total deformation) trigger the seismic reactivation of fractures with different orientations. - PublicationAccès libreEvaluation of the Diametrical Core Deformation and Discing Analyses for In‑Situ Stress Estimation and Application to the 4.9 km Deep Rock Core from the Basel Geothermal Borehole, Switzerland(2021-9-14)
;Ziegler, MartinThe in situ state of rock mass stresses is a key design parameter, e.g., for deep engineered geothermal systems. However, knowledge of the stress state at great depths is sparse mostly because of the lack of possible in situ tests in deep boreholes. Among different options, core-based in situ stress estimation may provide valuable stress information though core-based techniques have not yet become a standard. In this study we focus on the Diametrical Core Deformation Analysis (DCDA) technique using monzogranitic to monzonitic rock drill cores from 4.9 km depth of the Basel-1 borehole in Switzerland. With DCDA the maximum and minimum horizontal stress (SHmax and Shmin) directions, and the horizontal differential stress magnitudes (∆S) can be estimated from rock cores extracted from vertical boreholes. Our study has three goals: first, to assess photogrammetric core scanning to conduct DCDA; second, to compare DCDA results with borehole breakout and stress-induced core discing fracture (CDF) data sets; and third, to investigate the impact of rock elastic anisotropy on ∆S. Our study reveals that photogrammetric scanning can be used to extract reliable core diametrical data and CDF traces. Locally aligned core pieces showed similar SHmax orientations, conform to borehole breakout results. However, the variability of core diametrical differences was large for the Basel-1 core pieces, which leads to a large spread of ∆S. Finally, we demonstrate that core elastic anisotropy must be considered, requiring robust estimates of rock elastic moduli, to receive valuable stress information from DCDA analyses. - PublicationAccès libreCharacterization, Hydraulic Stimulation, and Fluid Circulation Experiments in the Bedretto Underground Laboratory for Geosciences and Geoenergies(: ARMA, 2021-6-18)
;Hertrich, Marian ;Brixel, Bernard ;Broeker, Kai ;Driesner, Thomas ;Gholizadeh, Nima ;Giardini, Domenico ;Jordan, D. ;Krietsch, Hannes ;Loew, Simon ;Ma, Xiadong ;Maurer, Hansruedi ;Nejati, M. ;Plenkers, K. ;Rast, M. ;Saar, Martin O. ;Shakas, A. ;van Limborgh, R. ;Villiger, Linus ;Wenning, Q. C. ;Ciardo, F. ;Kaestli, P. ;Obermann, A. ;Rinaldi, P. ;Wiemer, Stefan ;Zappone, Alba ;Bethmann, Falco ;Christe, Fabien ;Castilla, Raymi ;Dyer, Ben ;Karvounis, Dimitrios ;Meier, Peter ;Serbeto, Francisco ;Amann, Florian ;Gischig, ValentinReservoir stimulation and hydraulic fracturing in oil-and-gas reservoirs has become common practice and the techniques are continuously improved. However, directly applying the same techniques to extract geothermal energy from low permeability crystalline rocks (i.e., Enhanced Geothermal Systems, EGS) continues to present operational challenges. The research community and industry have shown great interest in addressing the unresolved problems using down-scaled in-situ hydraulic stimulation experiments. Focus has been on the 1–10 m field scale, but in comparison to a realistic EGS operations (1000s m) the scale is two orders too small, the depth and associate stress field differ, and the hydraulic conditions are not perfectly representative. To study the processes in-situ and to bridge the scale between in-situ labs and actual EGS projects, the Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) was built in a tunnel in the Swiss Alps so that hydraulic stimulation experiments could be performed with dense monitoring systems at the 100 m scale. This effort enables process-oriented research and testing of field scale techniques at conditions that are closer to target reservoir depths and scale. This study gives in-sight on the initial geologic, hydraulic, and stress characterization of the BULGG related to on-going stimulation and circulation experiments - PublicationAccès libreObservation of a Repeated Step-wise Fracture Growth During Hydraulic Fracturing Experiment at the Grimsel Test Site(2021-4-19)
; ; ;Villiger, Linus ;Gischig, ValentinAmann, FlorianHydraulic fracturing (HF) experiments were conducted at the Grimsel Test Site (GTS), Switzerland, with the aim to improve our understanding of the seismo-hydro-mechanical processes associated with high-pressure fluid injection in a moderately fractured crystalline rock mass. Observations from one of these HF experiments indicate simultaneous propagation of multiple fractures during continuous fluid injection. The pressure measured in one observation interval show a cyclic response indicating repeated step-wise fracture growth. This is interpreted as a stick-split mechanism propagating fractures in an episodic manner and connecting them to the natural fracture network. In addition, transient partial closure and opening of fractures on the time-scale of seconds to minutes were observed from pressure and deformation monitoring. Our data set provides unprecedented insight in the complexity of hydraulic fracture propagation. - PublicationAccès libreDepth-Dependent Scaling of Fracture Patterns Inferred from Borehole Images in GPK3 and GPK4 Wells at Soultz-sous-Forêts Geothermal Site(2021-4-19)
;Moein, M. J. A. ;Bär, Kristian; ;Genter, AlbertSass, IngoEngineering an Enhanced Geothermal System (EGS) requires a proper understanding of the fracture network properties from small to large scales in order to create a reliable geological model for reservoir simulations. As deterministic identification of all fractures in a reservoir is practically impossible, stochastic approaches known as Discrete Fracture Networks (DFN) are used. This consists of parametrizing a statistical realization of fracture networks constrained by direct observations from borehole images and/or outcrop data, if available. DFN models can be used to study the thermo-hydro-mechanical (THM) properties of fractured rocks and to simulate the processes associated within: I) fluid circulation, II) flow and heat production as well as III) seismic response to hydraulic stimulations. Fractal DFNs are based on multiscale fracture network characteristics and are constrained by the scaling properties of fracture network attributes such as length (or size) and spatial distribution. The dual power-law model is a mathematical representation of fractures that parametrize fractal DFNs with two scaling exponents: 1) scaling of spatial distribution using two-point correlation dimension of fracture centers in three dimensions and 2) power-law exponent of fracture length distribution. Direct measurements of fracture length exponents from borehole images or cores are an unresolved challenge and the resolution of geophysical investigations is not sufficient to image the natural fracture networks. In contrast, the spatial distribution of fractures may be precisely characterized using borehole image logs and cores. Currently, the depth-dependence of spatial clustering of fracture patterns in the earth’s crust is not fully understood, although it may be required to anticipate deep reservoir conditions from shallower datasets. Here, we study such a depth dependency by using the two-point correlation dimension of fractures along the boreholes as a reliable estimate of the fractal dimension. We investigate the data stemming from two deep boreholes, GPK3 and GPK4, drilled into the crystalline basement rocks at the Soultz-sous-Forêts geothermal site. Recent analyses unraveled no systematic variation of fractal dimension with depth in any of the boreholes at the one standard deviation level of uncertainty. This conclusion may support the hypothesis of generating fracture network models with only a single correlation dimension using the stereological relationships in reservoirs up to 5 km depth in crystalline basements.