Voici les éléments 1 - 8 sur 8
  • Publication
    Accès libre
    Climate Change in the Underworld: Impacts for Soil-Dwelling Invertebrates
    (New York: Wiley Online library, 2016) ;
    Johnson, Scott N.
    ;
    ;
    Nielsen, Uffe N.
    This chapter reviews and discusses the impact of elevated atmospheric CO2 and climatic changes on three of the functionally most important invertebrate taxa in soil ecosystems: nematodes, insects, and earthworms. The effects of climate and atmospheric CO2 change on soil abiotic conditions vary and numerous biotic feedbacks occur. Many soil‐dwelling insects are herbivores and devastate crops, which impact human societies through yield decreases; therefore an understanding of how climate change will affect their pest status is essential. The chapter discusses potential broader impacts of soil nematode community responses to climate change on ecosystems. Soil‐dwelling insects that feed on roots are usually the juvenile stages of insects that live aboveground as adults. These soil invertebrates can reach astonishing densities, with root‐feeding cicadas of deciduous forests of North America having the largest collective biomass per unit area of any terrestrial animal.
  • Publication
    Accès libre
    Systemic root signalling in a belowground, volatile-mediated tritrophic interaction
    (2011) ; ;
    Robert, Christelle Aurélie Maud
    ;
    Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.
  • Publication
    Accès libre
    Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes
    (2009)
    Kurtz, B.
    ;
    ; ;
    Kuhlmann, Ulrich
    ;
    Toepfer, Stefan
    As a first step towards the development of an ecologically rational control strategy against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe, we compared the susceptibility of the soil living larvae and pupae of this maize pest to infection by three entomopathogenic nematode (EPN) species. In laboratory assays using sand-filled trays, Heterorhabditis bacteriophora Poinar and H. megidis Poinar, Jackson & Klein (both Rhabditida: Heterorhabditidae) caused comparable mortality among all three larval instars and pupae of D. v. virgifera. In soil-filled trays, H. bacteriophora was slightly more effective against third larval instars and pupae, and H. megidis against third larval instars, compared to other developmental stages. In both sand and soil, Steinernema feltiae (Filipjev) (Rh.: Steinernematidae) was least effective against second instars. In conclusion, all larval instars of D. v. virgifera show susceptibility to infection by all three nematodes tested. It is predicted that early application against young larval instars would be most effective at preventing root feeding damage by D. v. virgifera. Applications of nematodes just before or during the time period when third instars are predominant in the field are likely to increase control efficacy. According to our laboratory assays, H. bacteriophora and H. megidis appear to be the most promising candidates for testing in the field.
  • Publication
    Accès libre
    Restoring a maize root signal that attracts insect-killing nematodes to control a major pest
    (2009)
    Degenhardt, Jörg
    ;
    ;
    Köllner, Tobias G.
    ;
    Frey, Monika
    ;
    Gierl, Alfons
    ;
    Gershenzon, Jonathan
    ;
    Hibbard, Bruce E.
    ;
    Ellersieck, Mark R.
    ;
    When attacked by herbivorous insects, plants emit volatile compounds that attract natural enemies of the insects. It has been proposed that these volatile signals can be manipulated to improve crop protection. Here, we demonstrate the full potential of this strategy by restoring the emission of a specific belowground signal emitted by insect-damaged maize roots. The western corn rootworm induces the roots of many maize varieties to emit (E)-β-caryophyllene, which attracts entomopathogenic nematodes that infect and kill the voracious root pest. However, most North American maize varieties have lost the ability to emit (E)-β-caryophyllene and may therefore receive little protection from the nematodes. To restore the signal, a nonemitting maize line was transformed with a (E)-β-caryophyllene synthase gene from oregano, resulting in constitutive emissions of this sesquiterpene. In rootworm-infested field plots in which nematodes were released, the (E)-β-caryophyllene-emitting plants suffered significantly less root damage and had 60% fewer adult beetles emerge than untransformed, nonemitting lines. This demonstration that plant volatile emissions can be manipulated to enhance the effectiveness of biological control agents opens the way for novel and ecologically sound strategies to fight a variety of insect pests.
  • Publication
    Accès libre
    Manipulation of tritrophic interactions: a key for belowground biological control ?
    (2008) ;
    Turlings, T.C.J.
    En réponse à des attaques d’insectes phytophages, les plantes produisent des composés organiques volatiles servant de signal aidant les ennemis naturels de l’insecte herbivore à localiser un hôte ou une proie potentielle. De telles interactions trophiques sont bien comprises pour la partie aérienne de la plante. Récemment, des systèmes tritrophiques souterrains ont été mis en évidence et des composés importants impliqués dans de telles interactions ont été identifiés. Parmi eux, un sesquiterpène, le (E)-β-caryophyllène, est considéré comme un composé clé dans le modèle tritrophique Zea mais - Diabrotica virgifera virgifera - Heterorhabditis megidis. Des racines de maïs attaquées par la larve du ravageur D. v. virgifera émettent dans le sol ce signal d’alerte et peuvent ainsi attirer le nématode entomopathogène H. megidis capable d’infecter et de tuer la larve de D. v. virgifera. Les feuilles de maïs attaquées par des insectes émettent un large spectre de composés volatiles. Afin de comprendre pourquoi les racines d’une même plante n’émettent qu’un éventail réduit de ces composés lors d’une attaque de D. v. virgifera, largement dominé par le (E)-β-caryophyllène, une étude concernant la diffusion de ces volatiles dans le sol fût menée. Parmi les composés testés, quelques autres sesquiterpènes diffusèrent mieux que le (E)-β-caryophyllène, mais la biosynthèse de ces derniers est plus coûteuse pour la plante. L’émission de (E)-β-caryophyllène semble donc être un compromis optimal entre les propriétés de diffusion de cette molécule et ses coûts de production pour la plante (Chapitre I). A cause de la sélection opérée sur le maïs depuis sa domestication, certains des cultivars ont perdu la capacité de produire et d’émettre ce signal souterrain. L’insertion d’un gène responsable de la synthèse du (E)-β- caryophyllène de l’origan dans une variété de maïs ne produisant plus ce signal d’appel à l’aide a rétabli la capacité de la plante à émettre du (E)-β-caryophyllène. Lors d’expériences en champs et en présence de H. megidis, cette émission résulte en une meilleure protection du système racinaire et moins d’adultes de D. v. virgifera émergent à proximité des plantes transformées que des plantes contrôles (Chapitre II). Dans un souci d’utilisation de la meilleure espèce de nématodes entomopathogènes en lutte biologique contre D. v. virgifera en Europe, l’efficacité de H. bacteriophora, H. megidis et Steinernema feltiae contre ce ravageur fût testée dans des conditions semi-naturelles. Une mortalité plus importante à tous les stades pré-imagos du ravageur ciblé fût observée en présence des trois espèces de nématodes entomopathogènes susmentionnées. Cependant des résultats légèrement meilleurs furent obtenus avec les deux espèces du genre Heterorhabditis comparé à Steinernema feltiae (Chapitre III). Lors d’expériences en champs, H. megidis et S. feltiae se sont révélés considérablement plus efficaces dans les parcelles plantées de maïs émettant du (E)-β-caryophyllène que dans les parcelles n’en émettant pas. H. bacteriophora semble ne pas être influencé par la présence ou l’absence de ce volatile mais semble plutôt répondre à d’autres composés produits par une plante infestée. Néanmoins, H. bacteriophora a égalé le niveau de contrôle du ravageur atteint par les insecticides chimiques (Chapitre IV). Dans le but d’obtenir encore un meilleur contrôle de D. v. virgifera, H. bacteriophora a été manipulé en laboratoire. Une nouvelle souche de ce nématode a été sélectionnée pour une réponse améliorée au (E)-β- caryophyllène. Grâce aux olfactomètres souterrains à six bras, il a suffi de six générations pour accroître l’attraction de H. bacteriophora vers ce signal racinaire, alors que cette espèce ne répondait normalement pas à ce composé (voir Chapitre IV). Lors d’expériences en champs, la souche sélectionnée, lorsqu’elle était appliquée près d’une variété de maïs produisant du (E)-β-caryophyllène, s’est avérée plus efficace pour éliminer D. v. virgifera que la souche d’origine. De telles différences entre la souche sélectionnée et l’originale n’ont pas été observées auprès des plantes n’émettant pas de (E)-β-caryophyllène (Chapitre V). En parallèle des connaissances fondamentales sur les interactions tritrophiques souterraines mises en lumière, la présente étude apporte des informations clés sur l’utilisation des nématodes entomopathogènes dans un contexte de lutte biologique contre D. v. virgifera. De plus, cette thèse démontre pour la première fois à notre connaissance que la lutte biologique peut être améliorée par la manipulation soit de la production d’un signal émis par une plante, soit de la réponse du troisième niveau trophique à ce même signal., In response to attack by phytophagous insects, plants produce volatile organic compounds that serve as cues for natural enemies of the herbivore to locate their potential host or prey. Such tritrophic interactions are well understood aboveground. Recently, it has become evident that such interactions also occur belowground. Among the compounds that are involved in belowground tritrophic signalling is the sesquiterpene (E)-β-caryophyllene, a key compound emitted by insect-damaged maize roots (Zea mais) when attacked by larvae of Diabrotica virgifera virgifera. This sesquiterpene is attractive to the entomopathogenic nematode Heterorhabditis megidis, which infects and kills D. v. virgifera larvae. Aboveground, maize leaves subjected to insect herbivory emit a wide range of volatile compounds. To understand why the same plant when attacked belowground only emits a reduced pattern of compounds, largely dominated by (E)-β-caryophyllene, we studied the diffusion properties of this sesquiterpene. Of the potential compounds tested a few other sesquiterpenes diffused better than (E)-β-caryophyllene, but these are more costly to synthesize for the plant. The release of (E)-β-caryophyllene seems ideal balance between diffusion efficiency and production costs (Chapter I). Because of breeding, some maize varieties are not emitting this belowground signal anymore. The transformation with a terpene synthase gene from oregano into a maize line that normally does not produce this call-for-help signal successfully restored their ability to release (E)-β-caryophyllene. In presence of H. megidis, this release resulted in a better protection of the root system and fewer D. v. virgifera adults emerging near the transformed plants compared to their original lines under field conditions (Chapter II). In order to determine the most effective nematode species for biological control of D. v. virgifera in Europe, we compared the control efficiency of H. bacteriophora, H. megidis and Steinernema feltiae. The susceptibility of different D. v. virgifera development stages to the above mentioned nematodes species was assessed under semi-field conditions. All stages of the targeted pest were susceptible to entomopathogenic nematodes and Heterorhabditis species were slightly better in controlling the pest than Steinernema species (Chapter III). When tested in the field near (E)-β-caryophyllene producing and non-producing maize varieties,H. megidis and S. feltiae were considerably more effective in plots with the (E)-β-caryophyllene releasing line. H. bacteriophora appears to use other plant-produced signals. Promisingly H. bacteriophora level of control was comparable to levels that can be achieved with pesticides (Chapter IV). In order to achieve an improved control of D. v. virgifera, was manipulated in the laboratory. We selected a strain of H. bacteriophora in belowground six-arm olfactometers over six generations for improved attraction to (E)-β-caryophyllene. This species does normally not respond to the signal (Chapter IV). In field trials it was confirmed that the selected strain, when applied near a (E)-β-caryophyllene producing maize variety, was more efficient in killing D. v. virgifera than the original strain. As expected, there was no such difference between the strains when released near a maize variety that did not emit (E)-β-caryophyllene (Chapter V). In addition to the fundamental knowledge on belowground interactions obtained by the current study, it also provides key information on how to use entomopathogenic nematodes for biological control of D. v. virgifera. Moreover, this study is, to our knowledge, the first demonstration that biological control can be improved by manipulating the production of and responsiveness to a plant signal.
  • Publication
    Accès libre
    Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency
    Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-β-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, α-copaene, diffused better than (E)-β-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-β-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.
  • Publication
    Accès libre
    Recruitment of entomopathogenic nematodes by insect-damaged maize roots
    (2005) ;
    Köllner, Tobias G.
    ;
    Degenhardt, Jörg
    ;
    ;
    Toepfer, Stefan
    ;
    Kuhlmann, Ulrich
    ;
    Gershenzon, Jonathan
    ;
    Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-β-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-β-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-β-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.