Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes (Marschner Review for the "Rhizosphere 3" Special Issue)
    Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
  • Publication
    Métadonnées seulement
    Belowground chemical signaling in maize: When simplicity rhymes with efficiency
    Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-beta-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, alpha-copaene, diffused better than (E)-beta-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-beta-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.