Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes
    (2009)
    Kurtz, B.
    ;
    ; ;
    Kuhlmann, Ulrich
    ;
    Toepfer, Stefan
    As a first step towards the development of an ecologically rational control strategy against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe, we compared the susceptibility of the soil living larvae and pupae of this maize pest to infection by three entomopathogenic nematode (EPN) species. In laboratory assays using sand-filled trays, Heterorhabditis bacteriophora Poinar and H. megidis Poinar, Jackson & Klein (both Rhabditida: Heterorhabditidae) caused comparable mortality among all three larval instars and pupae of D. v. virgifera. In soil-filled trays, H. bacteriophora was slightly more effective against third larval instars and pupae, and H. megidis against third larval instars, compared to other developmental stages. In both sand and soil, Steinernema feltiae (Filipjev) (Rh.: Steinernematidae) was least effective against second instars. In conclusion, all larval instars of D. v. virgifera show susceptibility to infection by all three nematodes tested. It is predicted that early application against young larval instars would be most effective at preventing root feeding damage by D. v. virgifera. Applications of nematodes just before or during the time period when third instars are predominant in the field are likely to increase control efficacy. According to our laboratory assays, H. bacteriophora and H. megidis appear to be the most promising candidates for testing in the field.
  • Publication
    Accès libre
    Recruitment of entomopathogenic nematodes by insect-damaged maize roots
    (2005) ;
    Köllner, Tobias G.
    ;
    Degenhardt, Jörg
    ;
    ;
    Toepfer, Stefan
    ;
    Kuhlmann, Ulrich
    ;
    Gershenzon, Jonathan
    ;
    Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-β-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-β-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-β-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.