Voici les ƩlƩments 1 - 3 sur 3
  • Publication
    MƩtadonnƩes seulement
    Oriented responses of grapevine moth larvae Lobesia botrana to volatiles from host plants and an artificial diet on a locomotion compensator
    (2009)
    Becher, P. G.
    ;
    Larvae of the grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) are a major pest of vine, Vitis vinifera. As larvae have limited energy reserves and are in danger of desiccation and predation an efficient response to plant volatiles that would guide them to food and shelter could be expected. The responses of starved 2nd or 3rd instar larvae to volatile emissions from their artificial diet and to single host plant volatiles were recorded on a locomotion compensator. Test products were added to an air stream passing over the 30 cm diameter servosphere. The larvae showed non-directed walks of low rectitude in the air stream alone but changed to goal-oriented upwind displacement characterised by relatively straight tracks when the odour of the artificial diet and vapours of methyl salicylate, 1-hexanol, (Z)-3-hexen-1-ol, terpinen-4-ol, 1-octen-3-ol, (E)-4,8-dimethyl-1,3,7-nonatriene and (Z)-3-hexenyl acetate were added to the air stream. This chemoanemotactic targeted displacement illustrates appetence for certain volatile cues from food by starved Lobesia larvae. Analysis of the larval behaviour indicates dose dependent responses to some of the host plant volatiles tested with a response to methyl salicylate already visible at 1 ng, the lowest source dose tested. These behavioural responses show that Lobesia larvae can efficiently locate mixtures of volatile products released by food sources as well as single volatile constituents of their host plants. Such goal-oriented responses with shorter travel time and reduced energy loss are probably of importance for larval survival as it decreases the time they are exposed to biotic and abiotic hazards. (C) 2009 Elsevier Ltd. All rights reserved.
  • Publication
    MƩtadonnƩes seulement
    Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia
    (2004)
    Otalora-Luna, F.
    ;
    Perret, J. L.
    ;
    A combination of 1,000 ppm CO2 plus 30-40 ppb NH3 in an air stream induced Rhodnius prolixus nymphs walking on a servosphere to perform a series of appetence behaviours. Shortly after the onset of stimulation the nymphs turned sharply upwind towards the source of the chemostimuli (within 13 +/- 9 s) from mostly downwind and crosswind walks in the air stream alone. The mean vector angles of these upwind tracks were concentrated in a cone 60degrees either side of due upwind. The upwind walking bugs stopped more frequently but for a shorter duration and walked at a higher speed than before stimulation. During stops in the presence of the chemostimuli the bugs frequently corrected their course angles and extended their forelegs to reach higher with their antennae in the air. In the air stream alone R. prolixus nymphs frequently sampled the sphere surface with the antennae and cleaned their antennae with the foreleg tarsi. However, the nymphs only briefly tapped the left or right antennal flagellum on the corresponding first leg tarsus and never touched the servosphere surface in the presence of the chemostimuli. After chemostimulus removal from the air stream the bugs continued to respond with the same appetence responses as during stimulation, but walked more tortuously in a crosswind direction in an effort to regain contact with the chemostimuli.
  • Publication
    MƩtadonnƩes seulement
    Responses of the tropical bont tick, Amblyomma variegatum (Fabricius), to its aggregation-attachment pheromone presented in an air stream on a servosphere
    (2000)
    McMahon, Conor
    ;
    Male Amblyomma variegatum ticks feeding on a host release a mixture of o-nitrophenol and methyl salicylate which serves to attract conspecifics. The behavioural responses of A. variegatum on a servosphere to these volatiles presented in an air stream are detailed hers. In still air, ticks walked on all eight legs, but with long halts. In contrast, the air stream caused continuous walking and induced a reaching response where the forelegs actively sampled the air. Such reaching increased the angular velocity and reduced walking speed, effects that were amplified in the presence of vapours from o-nitrophenol and methyl salicylate in the air flowing over the ticks. Vapour from a 1:1 mixture of o-nitrophenol and methyl salicylate was attractive over a 10(4)-fold concentration range providing an increase in upwind displacement of 20-40%, significantly higher than the natural ratio where o-nitrophenol vapour predominates. Although the responses to o-nitrophenol vapour were variable when presented alone, this chemical was consistently attractive when delivered with steer hair odour - unattractive on its own. Moreover, the upwind walk to this combination did not cause a change in speed or angular velocity. This supports the hypothesis that the response to the pheromone is enhanced by host odour.